Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finding influential communities in massive networks

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Community search is a problem of finding densely connected subgraphs that satisfy the query conditions in a network, which has attracted much attention in recent years. However, all the previous studies on community search do not consider the influence of a community. In this paper, we introduce a novel community model called k-influential community based on the concept of k-core to capture the influence of a community. Based on this community model, we propose a linear time online search algorithm to find the top-r k-influential communities in a network. To further speed up the influential community search algorithm, we devise a linear space data structure which supports efficient search of the top-r k-influential communities in optimal time. We also propose an efficient algorithm to maintain the data structure when the network is frequently updated. Additionally, we propose a novel I/O-efficient algorithm to find the top-r k-influential communities in a disk-resident graph under the assumption of \({{\mathcal {U}}}=O(n)\), where \({{\mathcal {U}}}\) and n denote the size of the main memory and the number of nodes, respectively. Finally, we conduct extensive experiments on six real-world massive networks, and the results demonstrate the efficiency and effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. If the maximal k-core of G has more than one MCCs, the \(\mathsf {ICPS}\) is a forest, where each MCC generates a tree.

  2. The original core maintenance algorithms independently proposed in [19, 23] mainly focus on edge deletion and insertion.

  3. Suppose that each answer only contains the set of nodes in each community; otherwise, we simply compute the induced subgraph by the nodes in the answer.

  4. http://snap.stanford.edu.

  5. http://konect.uni-koblenz.de/networks.

References

  1. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM (2013)

  2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)

  3. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD (2013)

  5. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE (2011)

  6. Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36(4), 21 (2011)

    Article  Google Scholar 

  7. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: KDD (2012)

  8. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technique report (2005)

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD (2013)

  12. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD (2014)

  13. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  14. Gregori, E., Lenzini, L., Orsini, C.: k-dense communities in the internet as-level topology graph. Comput. Netw. 57(1), 213–227 (2013)

    Article  Google Scholar 

  15. Hu, X., Tao, Y., Chung, C.W.: Massive graph triangulation. In: SIGMOD (2013)

  16. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. SIGMOD (2014)

  17. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  18. Li, R., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5), 509–520 (2015)

    Google Scholar 

  19. Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. IEEE Trans. Knowl. Data Eng. 26(10), 2453–2465 (2014)

    Article  Google Scholar 

  20. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Arboricity, h-index, and dynamic algorithms. Theor. Comput. Sci. 426, 75–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moody, J., White, D.R.: Structural cohesion and embeddedness: a hierarchical concept of social groups. Am. Sociol. Rev. 68, 103–127 (2003)

    Article  Google Scholar 

  22. Saito, K., Yamada, T.: Extracting communities from complex networks by the k-dense method. In: ICDM Workshops (2006)

  23. Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)

    Google Scholar 

  24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  25. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD (2010)

  26. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS (2011)

  27. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  28. Wang, N., Zhang, J., Tan, K.L., Tung, A.K.H.: On triangulation-based dense neighborhood graphs discovery. PVLDB 4(2), 58–68 (2010)

    Google Scholar 

  29. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE (2016)

  30. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43 (2013)

    Article  MATH  Google Scholar 

  31. Zhang, Y., Parthasarathy, S.: Extracting, analyzing and visualizing triangle k-core motifs within networks. In: ICDE (2012)

  32. Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing sccs in massive graphs. In: SIGMOD (2013)

  33. Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: SIGMOD (2015)

  34. Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)

    Google Scholar 

  35. Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: EDBT (2012)

Download references

Acknowledgements

The work was supported in part by (i) NSFC Grants (61402292, U1301252), NSF-Shenzhen Grants (JCYJ20150324140036826, JCYJ20140418095735561), and Startup Grant of Shenzhen Kongque Program (827/000065); (ii) ARC DE140100999 and ARC DP160101513; (iii) Research Grants Council of the Hong Kong SAR, China, 14209314 and 14221716; (iv) China 863 Grants: 2015AA015305.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey Xu Yu or Rui Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RH., Qin, L., Yu, J.X. et al. Finding influential communities in massive networks. The VLDB Journal 26, 751–776 (2017). https://doi.org/10.1007/s00778-017-0467-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-017-0467-4

Keywords