Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Time-topology analysis on temporal graphs

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Many real-world networks have been evolving and are finely modeled as temporal graphs from the viewpoint of the graph theory. A temporal graph is informative and always contains two types of features, i.e., the temporal feature and topological feature, where the temporal feature is related to the establishing time of the relationships in the temporal graph, and the topological feature is influenced by the structure of the graph. In this paper, considering both these two types of features, we perform time-topology analysis on temporal graphs to analyze the cohesiveness of temporal graphs and extract cohesive subgraphs. Firstly, a new metric named \(\mathbb {T}\)-cohesiveness is proposed to evaluate the cohesiveness of a temporal subgraph from the time and topology dimensions jointly. Specifically, given a temporal graph \(\mathcal {G}_s = (V_s, \mathcal {E}_s)\), cohesiveness in the time dimension reflects whether the connections in \(\mathcal {G}_s\) happen in a short period of time, while cohesiveness in the topology dimension indicates whether the vertices in \(V_s\) are densely connected and have few connections with vertices out of \(\mathcal {G}_s\). Then, \(\mathbb {T}\)-cohesiveness is utilized to perform time-topology analysis on temporal graphs, and two time-topology analysis methods are proposed. In detail, \(\mathbb {T}\)-cohesiveness evolution tracking traces the evolution of the \(\mathbb {T}\)-cohesiveness of a subgraph, and combo searching finds out cohesive subgraphs containing the query vertex, which have \(\mathbb {T}\)-cohesiveness values larger than a given threshold. Moreover, since combo searching is NP-hard, a pruning strategy is proposed to estimate the upper bound of the \(\mathbb {T}\)-cohesiveness value, and then improve the efficiency of combo searching. Experimental results demonstrate the efficiency of the proposed time-topology analysis methods and the pruning strategy. Besides, four more definitions of \(\mathbb {T}\)-cohesiveness are compared with our method. The experimental results confirm the superiority of our definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach. PVLDB 10(11), 1298–1309 (2017)

    Google Scholar 

  2. Belth, C., Zheng, X., Koutra, D.: Mining persistent activity in continually evolving networks. In: SIGKDD, pp. 934–944 (2020)

  3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)

    Article  MATH  Google Scholar 

  4. Cai, T., Li, J., Haldar, N.A.H., Mian, A., Yearwood, J., Sellis, T.: Anchored vertex exploration for community engagement in social networks. In: ICDE, pp. 409–420 (2020)

  5. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Natl. Secur. Agency Tech. Rep. 16, 3–29 (2008)

    Google Scholar 

  6. Cohen, L.: Time-Frequency Analysis, vol. 778. Prentice Hall, Hoboken (1995)

    Google Scholar 

  7. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD/PODS’13, pp. 277–288 (2013)

  8. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD/PODS’14, pp. 991–1002 (2014)

  9. Dang, T., Viennet, E.: Community detection based on structural and attribute similarities. In: ICDS, pp. 7–12 (2012)

  10. Danisch, M., Balalau, O., Sozio, M.: Listing k-cliques in sparse real-world graphs. In: WWW ’18, pp. 589–598 (2018)

  11. Das, B.C., Anwar, M.M., Bhuiyan, M.A.A., Sarker, I.H., Alyami, S.A., Moni, M.A.: Attribute driven temporal active online community search. IEEE Access 9, 93976–93989 (2021)

    Article  Google Scholar 

  12. Dhouioui, Z,. Akaichi, J.: Tracking dynamic community evolution in social networks. In: ASONAM 2014, pp. 764–770. IEEE (2014)

  13. Dong, Z., Huang, X., Yuan, G., Zhu, H., Xiong, H.: Butterfly-core community search over labeled graphs. Proc. VLDB Endow. 14(11), 2006–2018 (2021)

    Article  Google Scholar 

  14. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., Lin, X.: A survey of community search over big graphs. VLDB J. 29(1), 353–392 (2020)

    Article  Google Scholar 

  15. Fang, Y., Yang, Y., Zhang, W., Lin, X., Cao, X.: Effective and efficient community search over large heterogeneous information networks. PVLDB 13(6), 854–867 (2020)

    Google Scholar 

  16. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  17. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration of directed graphs based on degeneracy. Knowl. Inf. Syst. 35(2), 311–343 (2013)

    Article  Google Scholar 

  18. Guo, C., Wang, J., Zhang, Z.: Evolutionary community structure discovery in dynamic weighted networks. Physica A 413, 565–576 (2014)

    Article  Google Scholar 

  19. Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., Chen. E.: Chronos: a graph engine for temporal graph analysis. In: Proceedings of the Ninth European Conference on Computer Systems, pp. 1–14 (2014)

  20. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD/PODS’14, pp. 1311–1322 (2014)

  21. Huang, X., Lakshmanan, L.V., Xu, J.: Community Search Over Big Graphs, vol. 14. Morgan & Claypool Publishers, San Rafael (2019)

    Book  MATH  Google Scholar 

  22. Jia, C., Li, Y., Carson, M.B., Wang, X., Yu, J.: Node attribute-enhanced community detection in complex networks. Sci. Rep. 7(1), 1–15 (2017)

    Google Scholar 

  23. Kemal, M.U.: Anti-money laundering regulations and its effectiveness. J. Money Laund. Control 17(4), 416–427 (2014)

    Article  Google Scholar 

  24. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single pc. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  25. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2-es (2007)

    Article  Google Scholar 

  26. Leung, I.X.Y., Pan, H., Lio, P., Crowcroft, J.: Towards real-time community detection in large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(6 Pt 2), 066107 (2009)

    Article  Google Scholar 

  27. Levi, M., Reuter, P.: Money laundering. Crime Justice 34(1), 289–375 (2006)

    Article  Google Scholar 

  28. Li, R.H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808. IEEE (2018)

  29. Lima, R.S., Serrano, A.L.M., Imoniana, J.O., Cupertino, C.M.: Identifying financial patterns of money laundering with social network analysis: a Brazilian case study. J. Money Laund. Control 25(1), 118–134 (2021)

    Article  Google Scholar 

  30. Liu, B., Zhang, F., Zhang, W., Lin, X., Zhang, Y. Efficient community search with size constraint. In: ICDE, pp. 97–108. IEEE (2021)

  31. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: Vac: vertex-centric attributed community search. In: ICDE, pp. 937–948. IEEE (2020)

  32. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  33. Luo, J., Cao, X., Xie, X., Qu, Q., Xu, Z., Jensen, C.S.: Efficient attribute-constrained co-located community search. In: ICDE, pp. 1201–1212. IEEE (2020)

  34. Márquez, R., Weber, R., De Carvalho, A.C.: A non-negative matrix factorization approach to update communities in temporal networks using node features. In: ASONAM, pp. 728–732. IEEE (2019)

  35. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  36. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: WSDM, pp. 601–610 (2017)

  37. Pyle, D.H.: Bank Risk Management: Theory. Risk Management and Regulation in Banking, pp. 7–14. Springer, Berlin (1999)

    Book  Google Scholar 

  38. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  39. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. CSUR 51(2), 1–37 (2018)

    Article  Google Scholar 

  40. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI, pp. 4292–4293 (2015)

  41. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  42. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD ’10, pp. 939–948 (2010)

  43. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: KDD ’07, pp. 687–696 (2007)

  44. Sun, X., Feng, W., Liu, S., Xie, Y., Bhatia, S., Hooi, B., Wang, W., Cheng, X.: Monlad: money laundering agents detection in transaction streams. In: WSDM, pp. 976–986 (2022)

  45. Takaffoli, M., Sangi, F., Fagnan, J., Zäıane, O.R.: Community evolution mining in dynamic social networks. Procedia Soc. Behav. Sci. 22, 49–58 (2011)

    Article  Google Scholar 

  46. Wang, M., Wang, C., Yu, J.X., Zhang, J.: Community detection in social networks: an in-depth benchmarking study with a procedure-oriented framework. PVLDB 8(10), 998–1009 (2015)

    Google Scholar 

  47. Wang, X., Jin, D., Cao, X., Yang, L., Zhang, W.: Semantic community identification in large attribute networks. In: AAAI, pp. 265–271 (2016)

  48. Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local community detection: on free rider effect and its elimination. PVLDB 8(7), 798–809 (2015)

  49. Wu, Z., Lu, Z., Ho, S.Y.: Community detection with topological structure and attributes in information networks. TIST 8(2), 1–17 (2016)

    Article  Google Scholar 

  50. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)

    Google Scholar 

  51. Zhe, C., Sun, A., Xiao, X.: Community detection on large complex attribute network. In: KDD ’19, pp. 2041–2049 (2019)

  52. Zhuang, D., Chang, J.M., Li, M.: Dynamo: dynamic community detection by incrementally maximizing modularity. TKDE 33(5), 1934–1945 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61872207) and Baidu Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaokun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Wang, C., Gu, T. et al. Time-topology analysis on temporal graphs. The VLDB Journal 32, 815–843 (2023). https://doi.org/10.1007/s00778-022-00772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-022-00772-y

Keywords