Abstract
The rapid development of mobile intelligence and wearable computing promotes the rise of quantified-self. Users quantify themselves and realize self-tracking and self-cognition through the connection between mobile phone terminals and wearable computing devices. The characteristics of immersive quantified information design in the convergence mode of mobile intelligence and wearable computing attract many users to immerse into it. Based on the stimulus-body-response (S-O-R) model, this paper constructs an influence mechanism model that affects the immersive experience of quantified-self and adopts empirical research methods. This paper analyzes the influence of the information platform and content characteristics (interaction, ease of use, usefulness, entertainment) of the convergence of mobile intelligence and wearable computing on users’ immersive experience of quantified-self and the moderating effect of privacy concern and potential affordance on immersive experience and continuous participation. The results show that interaction, ease of use, usefulness, and entertainment all have a significant impact on users’ quantified-self immersive experience, and the influence is in the order of usefulness>ease of use>entertainment>interaction. Potential affordance and privacy concerns play a significant role in regulating the state of immersion and continuous participation. The conclusion of this study not only analyzes the influencing factors of users’ immersive experience of quantified-self from the characteristics of the convergence of mobile intelligence and wearable computing but also analyzes the relationship between users’ immersive experience of quantified-self and continuous participation from the perspective of potential affordance and privacy concerns. It provides opinions and suggestions for the interaction design and user information management of the convergence of mobile intelligence and wearable computing and has practical reference significance for related enterprises to improve user stickiness.
Similar content being viewed by others
References
Steve M (2010) Wearable computing: toward humanistic intelligence. Int Underw Syst Des 16(3):10–15
He J, Hu C, Li Y (2013) An autonomous fall detection and alerting system based on mobile and ubiquitous computing. In: 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing. IEEE, Piscataway, pp 539–543
Lara OD, Labrador MA (2012) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15(3):1192–1209
Mcgraw D, Belfort R, Pfister H (2015) Engaging patients while addressing their privacy concerns: the experience of project health design. Pers Ubiquit Comput 19(1):85–89
Chen R, Yang C (2014) Quantified Self: New opportunities of education research in the big data era——the 2014 Horizon Report of NMC. J Mod Educ Technol 24(11):5–11. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?bcode=CJFD&dbname=CJFDLAST2015&filename=XJJS201411002&v=5eLX5zyXBUbyQQndF9SX%25mmd2B%25mmd2BaCWhHXqAhgh0vnmwfjOyOw8SwWdSg%25mmd2BeeAPguYfof9s. Accessed 4 Nov 2020
Zhang YD, Li DJ (2018) A study on the barriers to consumer participation in quantifying self and its influencing mechanism. J Manag 15(01):74–83. (in china) https://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=GLXB201801009&tableName=CJFDPREP&url=. Accessed 4 Nov 2020
Wu JH (2015) Big data era quantified-self support the personalized learning research. China Inf-ormation Technology Education,23(19):42–45. (in china) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JYXX201519011. Accessed 4 Nov 2020
Fang HG, Luo JP (2016) Research on quantitative self-adaptive learning system of MOOC based on educational big data. Research on Audio-Visual Education 37(11):38–42+92. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=DHJY201611009&v=CVh8QiwYjEJIETGszhwTXVwkRiK4UIRfXGWAu4A1ufGyuWVaoIqtRINXF83JEkn7. Accessed 4 Nov 2020
Xie WT, Xu C (2016) The application of quantified self concept in the design of personal health management products. Packaging Eng 5(4):79–83. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=BZGC201604021&v=jCOrEOhn0P7lxnVc7QZhMMsV9SMJE2adL3Z%25mmd2B4M362HRXhLHrO6oqtTpPIf7pTwoO
Li I, Dey A, Forlizzi J (2010) A stage-based model of personal informatics systems, Conference on Human Factors in Computing Systems Georgia: USA, 557-566
Paton C, Hansen M, Fernandez L, Lau Y (2012) Self-tracking, social media and personal health records for patient empowered self-care. Contribution of the IMIA Social Media Working Group. Yearb Med Inform 7(7):16–24
Van den Bulck J (2015) Sleep apps and the quantified-self: blessing or curse? J Sleep Res 24(2):121–123
Csikszentmihalyi M (1975) Play and intrinsic rewards. In: Flow and the foundations of positive psychology. Springer, Dordrecht, pp 135–153
Koufaris M (2002) Applying the technology acceptance model and flow theory to online consumer behavior. Inf Syst Res 13(2):205–223
Xue Y, Xu ZL (2016) Analysis of influencing factors of users’ information behavior in Wechat marketing environment and its modeling —— from the perspective of immersion theory. Intell Theory Pract 39(6):104–109. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=QBLL201606020&v=%25mmd2FfPMA3j2b3TbBTgpmI8YRGD8MsO2zNkEwG%25mmd2B%25mmd2BjG4oX7AhP7JLL%25mmd2BtuaA0g3C9dYtV0. Accessed 4 Nov 2020
Xun J, Huang Q, Yuan QJ (2018) Immersion theory and its application and prospect in information system research. Journal of Modern Information 38(10):157–166. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=XDQB201810024&v=l4I%25mmd2F5OVI48D6%25mmd2F2dUCd8Q9cK78UNL32Qi2A9GN1%25mmd2BmXl2xFTGy2z8VEWPRZYQA7MQp. Accessed 4 Nov 2020
Westin AF (1968) Privacy and freedom. Wash Lee Law Rev 25(1):166–170
Goodwin C (1991) Privacy: recognition of a consumer right. J Public Policy Mark 10(1):149–166
Dinev T, Hart P (2006) Internet privacy concerns and social awareness as determinants of intention to transact. Int J Electron Commer 10(2):7–29
Alashoor T, Han S, Joseph RC (2017) Familiarity with big-data, privacy concerns, and self-disclosure accuracy in social networking websites: an APCO model. Commun Assoc Inf Syst 41:62–96
Xu F, Michael K, Chen X (2013) Factors affecting privacy disclosure on social network sites: an integrated model. Electron Commer Res 13(2):151–168
Mamonov S, Benbunan FR (2017) Exploring factors affecting social e-commerce service adoption: the case of Facebook-Gifts. Int J Inf Manag 37(6):590–600
Peng GJ, Ahao YR, Wang TG (2012) Android-based mobile phone privacy protection technology and implementation. Netinfo Security 10(4):54–57. (in china) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XXAQ201204021.htm. Accessed 4 Nov 2020
Li SM (2015) Research on privacy leakage of Android phones. Computer Engineering & Software 11(2):69–72. (in china) http://www.cnki.com.cn/article/cjfdtotal-rjzz201502015.htm. Accessed 4 Nov 2020
Lanamäki A, Thapa D, Stendal K (2016) When is an affordance? Outlining four stances, Working Conference on Information Systems and Organizations. Springer, Cham, 125-139
Gibson JJ (1950) The Perception of the visual world. Riverside Press, Boston, pp 35–38
Volkoff O, Strong DM (2018) Affordance theory and how to use it in IS research, in the rout ledge companion to management information systems. Routledge, New York
Deng WH, Yi M (2018) Research on the adoption mechanism of additional comments of online users based on SOR model. Libr Theory Pract 56(8):33–39. (in china) https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=LSGL201808009&v=d6E8e3QBmaNcZyHTTaHa%25mmd2BIed4%25mmd2B8MbBFT9K%25mmd2B0j%25mmd2FDQHhn91DLhDMpciis68f0EwCeh. Accessed 4 Nov 2020
Huang E (2012) Online experiences and virtual goods purchase intention. Internet Res 22(3):252–274
Su CH, Hsaio KC (2015) Developing and evaluating gamifying learning system by using flow-based model. Eurasia J Math Sci Technol Educ 11(6):1283–1306
Saadé R, Bahli B (2005) The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Inf Manag 42(2):317–327
Hsu CL, Lu HP (2004) Why do people play on-line games? An extended TAM with social influences and flow experience. Inf Manag 41(7):853–868
Delone WH, McLean ER (2003) The DeLone and McLean model of information systems success: a ten-year update. J Manag Inf Syst 19(4):9–30
Zhou T, Lu Y (2011) Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Comput Hum Behav 2(2):883–889
Hamari J, Koivisto J, Sarsa H (2014) Does gamification work? a literature review of empirical studies on gamification, the 47th Hawaii International Conference on System Sciences. IEEE
Chang YP, Zhu DH (2012) The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Comput Hum Behav 28(3):995–1001
Li Y (2011) Empirical studies on online information privacy concerns: literature review and an integrative framework. Commun Assoc Inf Syst 28(1):453–496
Ulmer G, Pallud J (2014) Understanding usages and affordances of enterprise social networks: a sociomaterial perspective. Proceedings 20th Americas Conference on Information Systems, Savannah, Georgia, USA
Pavlou PA, Liang H, Xue Y (2007) Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective. MIS Q 31(1):105–136
Oliver RL (1980) A cognitive model of the antecedents and consequences of satisfaction decisions. J Mark Res 17(6):460–469
Ladhari R (2007) The effect of consumption emotions on satisfaction and word-of-mouth communications. Psychol Mark 24(12):1085–1108
Algesheimer R, Borle S, Dholakia UM (2010) The impact of customer community participation on customer behaviors: an empirical investigation. Mark Sci 29(4):756–769
Funding
This research was supported by National Natural Science Foundation of China (No.71962014), Thirteenth Five-Year Planning (2017) research project of Jiangxi Social Science (No.17GL05), and Jiangxi Universities Humanities and Social Sciences Research on Young Fund (GL17115).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jin, H., Yan, J., Zhang, Y. et al. Research on the influence mechanism of users’ quantified-self immersive experience: on the convergence of mobile intelligence and wearable computing. Pers Ubiquit Comput 27, 1111–1122 (2023). https://doi.org/10.1007/s00779-020-01484-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00779-020-01484-2