Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gamma expansion of the Heston stochastic volatility model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We derive an explicit representation of the transitions of the Heston stochastic volatility model and use it for fast and accurate simulation of the model. Of particular interest is the integral of the variance process over an interval, conditional on the level of the variance at the endpoints. We give an explicit representation of this quantity in terms of infinite sums and mixtures of gamma random variables. The increments of the variance process are themselves mixtures of gamma random variables. The representation of the integrated conditional variance applies the Pitman–Yor decomposition of Bessel bridges. We combine this representation with the Broadie–Kaya exact simulation method and use it to circumvent the most time-consuming step in that method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10, 5–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlfors, L.V.: Complex Analysis, 3rd and international edn. McGraw–Hill, New York (1979)

    MATH  Google Scholar 

  3. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alfonsi, A.: High order discretization schemes for the CIR process: Application to affine term structure and Heston models. Math. Comput. 79, 209–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersen, L.: Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11(3), 1–42 (2008)

    Google Scholar 

  6. Bondesson, L.: On simulation from infinitely divisible distributions. Adv. Appl. Probab. 14, 855–869 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: Strong convergence. ESAIM: Probab. Stat. 12, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Broadie, M., Kaya, Ö.: Exact simulation of stochastic volatility and other affine jump diffusion processes. Oper. Res. 54, 217–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Press, London/Boca Raton (2004)

    MATH  Google Scholar 

  10. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 1943–1978 (1985)

    Google Scholar 

  11. Deelstra, G., Delbaen, F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delbaen, F., Shirakawa, H.: No arbitrage condition for positive diffusion price processes. Asia-Pac. Financ. Mark. 9, 159–168 (2002)

    Article  MATH  Google Scholar 

  13. Devroye, L.: Simulating Bessel random variables. Stat. Probab. Lett. 57, 249–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duffie, D., Glynn, P.: Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5, 897–905 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dutt, S.K., Welke, G.M.: Just-in-time Monte Carlo for path-dependent American options. J. Deriv. 15, 29–47 (2008)

    Article  Google Scholar 

  17. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    MATH  Google Scholar 

  18. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 13, 585–625 (1993)

    Article  Google Scholar 

  19. Higham, D.J., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8, 35–62 (2005)

    Google Scholar 

  20. Iliopoulos, G., Karlis, D.: Simulation from the Bessel distribution with applications. J. Stat. Comput. Simul. 73, 491–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kahl, C., Jäckel, P.: Fast strong approximation Monte Carlo schemes for stochastic volatility models. Quant. Finance 6, 513–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kallenberg, O.: Foundations of Modern Probability, 2nd ed. Springer, Berlin (2002)

    MATH  Google Scholar 

  23. Kim, K.-K.: Affine processes in finance: Numerical approximation, simulation and model properties. Ph.D. thesis, Columbia University (2008). http://pqdtopen.proquest.com

  24. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. 3rd ed. Springer, Berlin (1999)

    Google Scholar 

  25. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  26. Lord, R., Koekkoek, R., van Dijk, D.: A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance (2009, forthcoming). http://www.rogerlord.com

  27. Pitman, J., Yor, M.: A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheor. Verw. Geb. 59, 425–457 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pitman, J., Yor, M.: Infinitely divisible laws associated with hyperbolic functions. Can. J. Math. 55, 292–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  30. Scott, L.O.: Simulating a multi-factor term structure model over relatively long discrete time periods. In: Proceedings of the IAFE First Annual Computational Finance Conference. Graduate School of Business, Stanford University (1996)

  31. van Haastrecht, A., Pelsser, A.: Efficient, almost exact simulation of the Heston stochastic volatility model. Working paper, University of Amsterdam (2008). http://papers.ssrn.com

  32. Yuan, L., Kalbfleisch, J.D.: On the Bessel distribution and related problems. Ann. Inst. Stat. Math. 52, 438–447 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Kuk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasserman, P., Kim, KK. Gamma expansion of the Heston stochastic volatility model. Finance Stoch 15, 267–296 (2011). https://doi.org/10.1007/s00780-009-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-009-0115-y

Mathematics Subject Classification (2000)

JEL Classification