Abstract
It is shown that, in a semimartingale financial market model, there is equivalence between absence of arbitrage of the first kind (a weak viability condition) and the existence of a strictly positive process that acts as a local martingale deflator on nonnegative wealth processes.
Similar content being viewed by others
References
Bichteler, K.: Stochastic Integration with Jumps. Encyclopedia of Mathematics and Its Applications, vol. 89. Cambridge University Press, Cambridge (2002)
Brannath, W., Schachermayer, W.: A bipolar theorem for \(L^{0}_{+}(\varOmega , \mathcal{F}, \mathbf{P})\). In: Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 349–354. Springer, Berlin (1999)
Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)
Fernholz, E., Karatzas, I.: Stochastic portfolio theory: an overview. In: Bensoussan, A. (ed.) Handbook of Numerical Analysis. Mathematical Modeling and Numerical Methods in Finances, pp. 89–168 (2009)
Föllmer, H., Kabanov, Y.M.: Optional decomposition and Lagrange multipliers. Finance Stoch. 2, 69–81 (1998)
Gilles, C., LeRoy, S.F.: Bubbles and charges. Int. Econ. Rev. 33, 323–339 (1992)
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)
Ingersoll, J.E.: Theory of Financial Decision Making. Rowman & Littlefield Studies in Financial Mathematics. Rowman & Littlefield, Totowa (1987)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003)
Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y.M., Rozovskii, B.L., Shiryaev, A.N. (eds.) Statistics and Control of Stochastic Processes, Moscow, 1995/1996, pp. 191–203. World Sci. Publ., River Edge (1997)
Kabanov, Y.M., Kramkov, D.O.: Large financial markets: asymptotic arbitrage and contiguity. Teor. Veroâtn. Ee Primen. 39, 222–229 (1994)
Kabanov, Y.M., Liptser, R.S., Shiryaev, A.N.: Absolute continuity and singularity of locally absolutely continuous probability distributions. (I). Mat. Sb. 107, 364–415 (1978)
Kallsen, J.: σ-localization and σ-martingales. Teor. Veroâtn. Ee Primen. 48, 177–188 (2003)
Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)
Kardaras, C.: Finitely additive probabilities and the fundamental theorem of asset pricing. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance: Essays in Honour of Eckhard Platen, pp. 19–34. Springer, Berlin (2010)
Loewenstein, M., Willard, G.A.: Local martingales, arbitrage, and viability. Free snacks and cheap thrills. Econom. Theory 16, 135–161 (2000)
Loewenstein, M., Willard, G.A.: Rational equilibrium asset-pricing bubbles in continuous trading models. J. Econ. Theory 91, 17–58 (2000)
Platen, E., Heath, D.: A Benchmark Approach to Quantitative Finance. Springer Finance. Springer, Berlin, (2006)
Rogers, L.C.G.: Equivalent martingale measures and no-arbitrage. Stoch. Stoch. Rep. 51, 41–49 (1994)
Rokhlin, D.B.: Asymptotic arbitrage and numéraire portfolios in large financial markets. Finance Stoch. 12, 173–194 (2008)
Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)
Acknowledgements
The author would like to thank Yuri Kabanov for fruitful conversations that significantly helped in formulating and proving the results of this paper. Two anonymous referees provided invaluable help in the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kardaras, C. Market viability via absence of arbitrage of the first kind. Finance Stoch 16, 651–667 (2012). https://doi.org/10.1007/s00780-012-0172-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-012-0172-5
Keywords
- Arbitrage of the first kind
- Cheap thrills
- Fundamental theorem of asset pricing
- Equivalent local martingale deflators
- Semimartingales
- Predictable characteristics