Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Predicting answer acceptability for question-answering system

  • Published:
International Journal on Digital Libraries Aims and scope Submit manuscript

Abstract

Question-answering (QA) platforms such as Stack Overflow, Quora, and Stack Exchange have become favourite places to exchange knowledge with community users. Finding answers to simple or complex questions is easier on QA platforms nowadays. Due to a large number of responses from users all around the world, these CQA systems are currently facing massive problems. Stack Overflow allows users to ask questions and give answers or comments on others’ posts. Consequently, Stack Overflow also rewards those users whose posts are appreciated by the community in the form of reputation points. The accepted answer provides maximum reputation points to the answerer. More reputation points allow getting more website privileges. Hence, each answerer needs to get their answer accepted. Very little research has been done to check whether the user’s answers will be accepted or not. This paper proposes a model that predicts answer acceptability and its reason. The model’s findings help the answerer know about the answer acceptance; if the model predicted the probability of acceptance is less, the answerer might revise their answer immediately. The comparison with the state-of-the-art literature confirmed that the proposed model achieves better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Saikh, T., Ghosal, T., Mittal, A., Ekbal, A., Bhattacharyya, P.: Scienceqa: a novel resource for question answering on scholarly articles. Int. J. Dig. Libr. 1–13 (2022)

  2. Le, L.T., Shah, C., Choi, E.: Assessing the quality of answers autonomously in community question-answering. Int. J. Digit. Libr. 20(4), 351–367 (2019)

    Article  Google Scholar 

  3. Seki, Y., Zhao, K., Oguni, M., Sugiyama, K.: Cnn-based framework for classifying temporal relations with question encoder. Int. J. Digit. Libr. 23(2), 167–177 (2022)

    Article  Google Scholar 

  4. Ye, D., Xing, Z., Kapre, N.: The structure and dynamics of knowledge network in domain-specific q &a sites: a case study of stack overflow. Empir. Softw. Eng. 22(1), 375–406 (2017)

    Article  Google Scholar 

  5. May, A., Wachs, J., Hannák, A.: Gender differences in participation and reward on stack overflow. Empir. Softw. Eng. 24(4), 1997–2019 (2019)

    Article  Google Scholar 

  6. Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in community QA. In: Proceedings of the 33rd International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 411–418. ACM (2010)

  7. Tian, Y., Kochhar, P. S., Lim, E.-P., Zhu, F., Lo, D.: Predicting best answerers for new questions: an approach leveraging topic modeling and collaborative voting. In: Workshops at the International Conference on Social Informatics, pp. 55–68. Springer (2013)

  8. Perera, R., Nand, P., Naeem, A.: Utilizing typed dependency subtree patterns for answer sentence generation in question answering systems. Prog. Artif. Intell. 6(2), 105–119 (2017)

    Article  Google Scholar 

  9. Roy, P. K., Singh, J. P.: A tag2vec approach for questions tag suggestion on community question answering sites. In: Machine Learning and Data Mining in Pattern Recognition: 14th International Conference, MLDM 2018, New York, NY, USA, July 15–19, 2018, Proceedings, Part II 14, pp. 168–182. Springer (2018)

  10. Roy, P.K., Saumya, S., Singh, J.P., Banerjee, S., Gutub, A.: Analysis of community question-answering issues via machine learning and deep learning: state-of-the-art review. CAAI Trans. Intell. Technol. (2022)

  11. Roy, P.K., Singh, J.P., Baabdullah, A.M., Kizgin, H., Rana, N.P.: Identifying reputation collectors in community question answering (CQA) sites: exploring the dark side of social media. Int. J. Inf. Manag. (Elsevier) 42, 25–35 (2018)

    Article  Google Scholar 

  12. Tian, Q., Zhang, P., Li, B.: Towards predicting the best answers in community-based question-answering services. In: ICWSM, pp. 725–728 (2013)

  13. Sahu, T.P., Nagwani, N.K., Verma, S.: Selecting best answer: an empirical analysis on community question answering sites. IEEE Access 4, 4797–4808 (2016)

    Article  Google Scholar 

  14. Roitman, H., Erera, S., Feigenblat, G.: A study of query performance prediction for answer quality determination. In: Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 43–46, ACM (2019)

  15. Kelley, J., Stewart, C., Morris, N., Tiwari, D., He, Y., Elnikety, S.: Obtaining and managing answer quality for online data-intensive services. ACM Trans. Model. Perform. Evaluat. Comput. Syst.(TOMPECS) 2(2), 11 (2017)

    Google Scholar 

  16. Yulianti, E., Chen, R.-C., Scholer, F., Croft, W.B., Sanderson, M.: Ranking documents by answer-passage quality. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 335–344, ACM (2018)

  17. Tay, Y., Tuan, L. A., Hui, S.C.: Cross temporal recurrent networks for ranking question answer pairs. In: 32nd AAAI Conference on Artificial Intelligence, pp. 5512–5519 (2018)

  18. Roy, P.K., Ahmad, Z., Singh, J.P., Alryalat, M.A.A., Rana, N.P., Dwivedi, Y.K.: Finding and ranking high-quality answers in community question answering sites. Glob. J. Flex. Syst. Manag. 19(1), 53–68 (2018)

    Article  Google Scholar 

  19. Li, L., He, D., Jeng, W., Goodwin, S., Zhang, C.: Answer quality characteristics and prediction on an academic q &a site: a case study on researchgate. in Proceedings of the 24th International Conference on World Wide Web, pp. 1453–1458. ACM (2015)

  20. Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K., Schneider, K.A.: Mining duplicate questions in stack overflow. In: Proceedings of the 13th International Conference on Mining Software Repositories, pp. 402–412, ACM (2016)

  21. Roy, P.K., Singh, J.P., Banerjee, S.: Is this question going to be closed? answering question closibility on stack exchange. J. Inf. Sci. 01655515221118665 (2022)

  22. Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in community QA. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 411–418. ACM (2010)

  23. Xie, Z., Nie, Y., Jin, S., Li, S., Li, A.: Answer quality assessment in cqa based on similar support sets. In: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, pp. 309–325. Springer (2015)

  24. Elalfy, D., Gad, W., Ismail, R.: Predicting best answer in community questions based on content and sentiment analysis. In: 2015 IEEE 7th International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 585–590. IEEE (2015)

  25. Lee, C. T., Rodrigues, E. M., Kazai, G., Milic-Frayling, N., Ignjatovic, A.: Model for voter scoring and best answer selection in community q &a services. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT’09,vol. 1, pp. 116–123. IEEE (2009)

  26. John, B.M., Chua, A.Y.-K., Goh, D.H.-L.: What makes a high-quality user-generated answer? IEEE Internet Comput. 15(1), 66–71 (2011)

    Article  Google Scholar 

  27. Blooma, M.J., Hoe-Lian Goh, D., Yeow-Kuan Chua, A.: Predictors of high-quality answers. Online Inf. Rev. 36(3), 383–400 (2012)

    Article  Google Scholar 

  28. Lou, J., Fang, Y., Lim, K.H., Peng, J.Z.: Contributing high quantity and quality knowledge to online q &a communities. J. Am. Soc. Inform. Sci. Technol. 64(2), 356–371 (2013)

    Article  Google Scholar 

  29. Toba, H., Ming, Z.-Y., Adriani, M., Chua, T.-S.: Discovering high quality answers in community question answering archives using a hierarchy of classifiers. Inf. Sci. 261, 101–115 (2014)

    Article  MathSciNet  Google Scholar 

  30. Dong, H., Wang, J., Lin, H., Xu, B., Yang, Z.: Predicting best answerers for new questions: An approach leveraging distributed representations of words in community question answering. In:2015 9th International Conference on Frontier of Computer Science and Technology, pp. 13–18. IEEE (2015)

  31. Yao, Y., Tong, H., Xie, T., Akoglu, L., Xu, F., Lu, J.: Detecting high-quality posts in community question answering sites. Inf. Sci. 302, 70–82 (2015)

    Article  Google Scholar 

  32. Lin, Y., Shen, H.: Smartq: a question and answer system for supplying high-quality and trustworthy answers. IEEE Trans. Big Data 4(4), 600–613 (2017)

    Article  Google Scholar 

  33. Elalfy, D., Gad, W., Ismail, R.: A hybrid model to predict best answers in question answering communities. Egypt. Inf. J. 19(1), 21–31 (2018)

    Google Scholar 

  34. Calefato, F., Lanubile, F., Novielli, N.: An empirical assessment of best-answer prediction models in technical q &a sites. Empir. Softw. Eng. 24(2), 854–901 (2019)

    Article  Google Scholar 

  35. Shao, T., Guo, Y., Chen, H., Hao, Z.: Transformer-based neural network for answer selection in question answering. IEEE Access 7, 26146–26156 (2019)

    Article  Google Scholar 

  36. Roy, P.K.: Multilayer convolutional neural network to filter low quality content from quora. Neural Process. Lett. 52(1), 805–821 (2020)

    Article  MathSciNet  Google Scholar 

  37. Roy, P.K., Singh, J.P.: Predicting closed questions on community question answering sites using convolutional neural network. Neural Comput. Appl. (Springer) 32, 10555–10572 (2019)

    Article  Google Scholar 

  38. Kang, Y.-B., Du, H., Forkan, A.R.M., Jayaraman, P.P., Aryani, A., Sellis, T.: Expfinder: a hybrid model for expert finding from text-based expertise data. Expert Syst. Appl. 211, 118691 (2023)

    Article  Google Scholar 

  39. Peng, Q., Wang, W., Liu, H., Wang, Y., Xu, H., Shao, M.: Towards comprehensive expert finding with a hierarchical matching network. Knowl.-Based Syst. 257, 109933 (2022)

    Article  Google Scholar 

  40. Liu, Y., Tang, W., Liu, Z., Ding, L., Tang, A.: High-quality domain expert finding method in CQA based on multi-granularity semantic analysis and interest drift. Inf. Sci. 596, 395–413 (2022)

    Article  Google Scholar 

  41. Roy, P.K., Ahmad, Z., Singh, J.P., Banerjee, S.: Feature extraction to filter out low-quality answers from social question answering sites. IETE J. Res. 1–12 (2022)

  42. Lee, C.T., Rodrigues, E.M., Kazai, G., Milic-Frayling, N., Ignjatovic, A.: Model for voter scoring and best answer selection in community q &a services. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (2009). WI-IAT’09. vol. 1, pp. 116–123. IEEE (2009)

  43. Liu, M., Liu, Y., Yang, Q.: Predicting best answerers for new questions in community question answering. In: International Conference on Web-Age Information Management, pp. 127–138. Springer (2010)

  44. Zhou, J., Wang, S., Bezemer, C.-P., Hassan, A.E.: Bounties on technical q &a sites: a case study of stack overflow bounties. Empir. Softw. Eng. 25(1), 139–177 (2020)

    Article  Google Scholar 

  45. askubuntu.com, Stackexchange official website. [online] http://askubuntu.com/help/whats-reputation. Accessed 21 Feb 2017. (2017)

  46. Morán-Fernández, L., Bolón-Canedo, V., Alonso-Betanzos, A.: On the use of different base classifiers in multiclass problems. Progr. Artif. Intell. 6(4), 315–323 (2017)

    Article  Google Scholar 

  47. Singh, J.P., Irani, S., Rana, N.P., Dwivedi, Y.K., Saumya, S., Roy, P.K.: Predicting the “helpfulness" of online consumer reviews. J. Bus. Res. 70, 346–355 (2017)

    Article  Google Scholar 

  48. Feng, L., Jansche, M., Huenerfauth, M., Elhadad, N.: A comparison of features for automatic readability assessment. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 276–284. Association for Computational Linguistics (2010)

  49. Roy, P.K., Singh, J.P., Nag, A.: Finding active expert users for question routing in community question answering sites. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 440–451. Springer (2018)

  50. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown, D.: Text classification algorithms: a survey. Information 10(4), 150 (2019)

    Article  Google Scholar 

  51. Roy, P.K., Singh, J.P., Banerjee, S.: Deep learning to filter SMS spam. Futur. Gener. Comput. Syst. 102, 524–533 (2020)

    Article  Google Scholar 

  52. Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)

    Article  Google Scholar 

  53. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, vol. 1, pp. 278–282. IEEE (1995)

  54. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progr. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  55. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  56. Burel, G., He, Y., Alani, H.: Automatic identification of best answers in online enquiry communities. In: Extended Semantic Web Conference, pp. 514–529. Springer (2012)

  57. Suggu, S.P., Goutham, K.N., Chinnakotla, M.K., Shrivastava, M.: Deep feature fusion network for answer quality prediction in community question answering. arXiv preprint arXiv:1606.07103, pp. 1–7 (2016)

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.K. Predicting answer acceptability for question-answering system. Int J Digit Libr 25, 555–568 (2024). https://doi.org/10.1007/s00799-023-00357-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00799-023-00357-2

Keywords