Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Three-dimensional numerical modeling of land subsidence in Shanghai, China

Modélisation numérique tridimensionnelle de l’affaissement du sol à Shanghai, Chine

Modelado numérico tridimensional de la subsidencia del terreno en Shanghai, China

中国上海地面沉降三维数值模拟

Modelagem numérica tridimensional da subsidência de terreno em Xangai, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.

Résumé

Shanghai, en Chine, a connu deux périodes d’affaissement rapide du sol principalement cause par l’exploitation des eaux souterraines liée à la croissance économique et démographique. La première période s’est produite au cours des années 1956–1965 et est caractérisée par un taux moyen d’affaissement du sol de 83mm/an, et la seconde période au cours des années 1990–1998 avec un taux d’affaissement du sol de 16mm/an. Grâce à la mise en place de réseaux de surveillance des niveaux d’eau souterraine et des affaissements du sol, un ensemble de données précieuses a été recueilli depuis les années 1960 et a été utilisé pour développer des modèles régionaux d’affaissement des terrains appliqués à la gestion des ressources en eaux souterraines et à la mitigation des affaissements des sols. Les précédentes approches de modélisation géomécanique pour simuler les affaissements de sols étaient basées sur la contrainte verticale unidimensionnelle et la déformation. Dans cette étude, un modèle numérique de l’affaissement du sol a été développé pour simuler de manière explicite l’écoulement tridimensionnel de l’eau souterraine couplé aux déplacements dans le système aquifère en 3D pour le centre de Shanghai du 30 décembre 1979 au 30 décembre 1995. Le modèle est calibré en utilisant des mesures piézométriques, géodésiques de nivellement et de déformation en forage effectuées au cours de la période de simulation de 16 ans. Le modèle 3D reproduit de manière satisfaisante les observations piézométriques et de déformation. Pour la première fois, il est possible de fournir des estimations préliminaires sur le champ de déplacement horizontal associé à l’affaissement de terrain bien connu à Shanghai et pour lequel aucune mesure n’est disponible. Les déplacements horizontaux simulés ont un maximum à 11mm, soit moins de 10% du maximum d’affaissement de terrain simulés, et ceci semble trop petit pour endommager sérieusement des infrastructures telles que le métro( lignes de métro) dans la zone centrale de Shanghai.

Resumen

Shanghai, en China, ha experimentado dos períodos de rápida subsidencia del terreno causadas principalmente por la explotación de las aguas subterráneas que se relaciona con el crecimiento económico y demográfico. El primer período se produjo desde 1956 a 1965 y se caracterizó por un ritmo de subsidencia del terreno de 83 mm/año, y el segundo período se produjo entre 1990 y 1998 con un ritmo de subsidencia promedio de 16 mm/año. Debido a la instalación de redes de monitoreo de niveles de agua subterránea y de subsidencia del terreno, un conjunto de datos valiosos se recolectaron desde la década de 1960 y se usaron para desarrollar modelos regionales de subsidencia del terreno aplicados a la gestión de los recursos hídricos subterráneos y a la mitigación de la subsidencia del terreno. Los modelados geomecánicos previos que se aproximaron para simular la subsidencia del terreno suelo se basaron en el esfuerzo vertical y la deformación en una sola dimensión (1D). En este estudio, se desarrolla un modelo numérico de subsidencia del terreno para simular explícitamente el flujo de agua subterránea tridimensional (3D) y el sistema de desplazamientos del acuífero (3D) acoplados en el centro de Shanghai desde el 30 de diciembre 1979 hasta el 30 de diciembre de 1995. El modelo se calibró usando mediciones piezométricas, de nivelación geodésica y de extensómetros en perforaciones realizadas durante el período de simulación de 16 años. El modelo 3D reproduce satisfactoriamente las observaciones piezométricas y las deformaciones medidas. Por primera vez, existe la capacidad de proporcionar algunas estimaciones preliminares sobre el campo de desplazamiento horizontal asociado con subsidencia del terreno conocida en Shanghai y para el que no hay mediciones disponibles. El pico de desplazamiento horizontales simulado es de 11 mm, es decir, menos del 10% de la subsidencia del terreno máxima simulada, y parece demasiado pequeño como para dañar seriamente una infraestructura, como el subterráneo (líneas de subterráneo) en la zona del centro de Shanghai.

摘要

由于经济发展和人口增长,大量开采地下水造成了中国上海的地面沉降,地面沉降经历了两个快速发展阶段。第一个阶段出现在1956–1965年,平均沉降速度为83 mm/年,第二个阶段出现在1990–1998年,平均沉降速度为16 mm/年。由于建立了地下水位和地面沉降监测网,自从20世纪60年代收集了大量的宝贵数据,利用这些数据建立了区域地面沉降模型,用于管理地下水资源和减缓地面沉降。过去模拟地面沉降的地质力学建模方法基于一维垂直应力和变形。在本研究中,建立了地面沉降数值模型,用于模拟上海市区1979年12月30日到1995年12月30日明确耦合的三维地下水流和三维含水层系统位移。利用16年模拟期间获得的测压、大地水准测量和钻孔延伸仪测量结果对模型进行了校正。三维模型圆满地再现了实测的测压和变形观测结果。第一次能够向与上海著名的地面沉降相关的水平位移及那些缺乏测量数据的水平位移的地方提供初步估测结果。模拟的水平位移峰值为11 mm, 即不到模拟的最大地面沉降的10%,显得太小,以至于不能严重损坏基础设施诸如上海中心区域的地铁线路。

Resumo

Xangai, na China, passou por dois períodos de rápida subsidência de terreno causada principalmente pela explotação de águas subterrâneas relacionada com o crescimento econômico e populacional. O primeiro período ocorreu durante 1956–1965 e foi caracterizado por uma taxa média de subsidência de terreno de 83 mm/ano, e o segundo período ocorreu durante 1990–1998 com uma taxa média de subsidência de terreno de 16 mm/ano. Devido ao estabelecimento de redes de monitoramento das águas subterrâneas e para subsidência de terreno, um valioso conjunto de dados tem sido coletado desde 1960 e usado para desenvolver modelos regionais de subsidência de terreno aplicados para gerir recursos hídricos subterrâneos e mitigar a subsidência de terreno. As abordagens iniciais de modelagem geomecânica para simular subsidência de terreno foram baseadas em estresse vertical unidimensional (1D) e deformação. Nesse estudo, um modelo numérico de subsidência de terreno foi desenvolvido para simular fluxo de água subterrânea tridimensional (3D) explicitamente e 3D) e deslocamentos 3D do sistema aquífero no centro de Xangai de 30 de dezembro de 1979 a 30 de dezembro de 1995. Esse modelo é calibrado usando medições piezométricas, de nivelamento geodésico e de extensômetros em furos de sondagem feitas durante o período de simulação de 16 anos. O modelo 3D reproduz satisfatoriamente as medições piezométricas e deformações observadas. Pela primeira vez, existe a capacidade de proporcionar algumas estimativas preliminares sobre o campo de deslocamento horizontal associado a subsidência de terreno bem conhecida em Xangai e para a qual não estão disponíveis medições. O deslocamento horizontal simulado apresentou um pico em 11 mm, ou seja, menos de 10% da máxima subsidência de terreno simulada, o que parece ser muito pequeno para danificar seriamente a infraestrutura, tais como o metrô (linhas de metrô) na área central de Xangai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Burbey TJ, Helm DC (1999) Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers. Environ Eng Geosci 5(2):199–212

    Article  Google Scholar 

  • Comerlati A, Ferronato M, Gambolati G, Putti M, Teatini P (2004) Saving Venice by seawater. J Geophys Res 109, F03006. doi:10.1029/2004JF000119

    Google Scholar 

  • COMSOL Multiphysics 5.0 (2014) COMSOL Inc. http://cn.comsol.com/subsurface-flow-module. Accessed February 2016

  • Ferronato M, Gambolati G, Teatini P (2001) Ill-conditioning of finite element poroelasticity equations. Int J Solids Struct 38(34–35):5995–6014

    Article  Google Scholar 

  • Ferronato M, Janna C, Pini G (2012) Parallel solution to ill-conditioned FE geomechanical problems. Int J Numer Anal Methods Geomech 36(4):422–437

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Galloway DL, Burbey TJ (2011) Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486

    Article  Google Scholar 

  • Gambolati G, Freeze RA (1973) Mathematical simulation of the subsidence of Venice: 1, theory. Water Resour Res 9(3):721–733

    Article  Google Scholar 

  • Gambolati G, Teatini P, Baù D, Ferronato M (2000) The importance of poroelastic coupling in dynamically active aquifers of the Po River basin, Italy. Water Resour Res 36(9):2443–2459

    Article  Google Scholar 

  • Gambolati G, Ferronato M, Janna C (2011) Preconditioners in computational geomechanics: a survey. Int J Numer Anal Methods Geomech 35(9):980–996

    Article  Google Scholar 

  • Gu XY, Gong SL, Huang HC, Liu Y (1990) Quantitative study of land subsidence in Shanghai. Proc of the Sixth International Congress of IAEG, Amsterdam, August 1990, pp 1363–1370

  • Gu XY, Deng W, Xu DN, Liu Y (1993) Computation of land subsidence in Shanghai with secondary consolidation effect. Proc of the First International Conference on Soft Soil Engineering, Guangzhou, China, November 1993, pp 65–70

  • Helm DC (1994) Horizontal aquifer movement in a Theis-Thiem confined aquifer. Water Resour Res 30(4):953–964

    Article  Google Scholar 

  • Janna C, Ferronato M, Gambolati G (2010) A Block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems. SIAM J Sci Comput 32:2468–2484

    Article  Google Scholar 

  • Li Q, Su H (1991) A study on three dimensional groundwater flow model in Shanghai. Shanghai Geol 39:28–37

    Google Scholar 

  • Luo Y, Ye S, Wu J, et al (2016) A modified inverse procedure for calibrating parameters in land subsidence model and its field application in Shanghai, China. Hydrogeol J. doi:10.1007/s10040-016-1381-3

  • Shi X, Wu J, Ye S et al (2008) Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng Geol 100:27–42

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006) Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42, W01406. doi:10.1029/2005WR004242

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Baù D, Putti M (2010) Anthropogenic Venice uplift by seawater pumping into a heterogeneous aquifer system. Water Resour Res 46, W11547. doi:10.1029/2010WR009161

    Article  Google Scholar 

  • Teatini P, Castelletto N, Ferronato M, Gambolati G, Tosi L (2011) A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resour Res 47, W12507. doi:10.1029/2011WR010900

  • Verruijt A (1969) Elastic storage of aquifers. In: Wiest RJM (ed). Flow through porous media, Academic Press, New York, pp 331–376

  • Wang GY, You G, Shi B et al (2009) Earth fissures triggered by groundwater withdrawal and coupled by geological structures in Jiangsu Province, China. Environ Geol 57(5):1047–1054

    Article  Google Scholar 

  • Wu J, Shi X, Ye S et al (2010) Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China. J Hydrol Eng 15(3):223–236

    Article  Google Scholar 

  • Xue Y, Wu J, Zhang Y, Ye S et al (2008) Simulation of regional land subsidence in the southern Yangtze Delta. Sci China Ser D Earth Sci 51(6):808–825

    Article  Google Scholar 

  • Ye S (2004) Study on the regional land subsidence model and its application. PhD Thesis, Nanjing University, China

  • Ye S, Xue Y, Wu J, et al (2005) Study on the groundwater flow model for land subsidence modeling in Shanghai. Proc of the Seventh International Symposium on Land Subsidence, Shanghai, China, October 2005, pp 628–634

  • Ye S, Xue Y, Wu J et al (2011) Regional land subsidence model embodying complex deformation. P I Civil Eng-Wat M 164(WM10):519–531

    Google Scholar 

  • Ye S, Xue Y, Wu J et al (2012) Modeling visco-elastic–plastic deformation of soil with Modified Merchant Model. Environ Earth Sci 66:1497–1504

    Article  Google Scholar 

  • Zhang AG, Wei ZX (2002) Past, present and future research on land subsidence in Shanghai (in Chinese). Hydrogeol Eng Geol 33(5):72–75

    Google Scholar 

Download references

Acknowledgements

Funding supported by KLLSMP No. 201401, NSFC No. 41272259 and NSF of Jiangsu Province No. BK2012730 is appreciated. Pietro Teatini was partially supported by the University of Padova, Italy, within the 2014 International Cooperation Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Ye.

Additional information

Published in the theme issue “Land Subsidence Processes”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Luo, Y., Wu, J. et al. Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeol J 24, 695–709 (2016). https://doi.org/10.1007/s10040-016-1382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1382-2

Keywords