Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Chilean wine varietal classification using quadratic Fisher transformation

  • THEORETICAL ADVANCES
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cabezudo MD, Herraiz M, de Gorostiza EF (1983) On the main analytical characteristics for solving enological problems. Process Biochem 18(4):17–23

    Google Scholar 

  2. Etievant P, Schlich P (1989) Varietal and geographic classification of French red wines in terms of mayor acids. J Sci Food Agric 46(4):421–438

    Article  Google Scholar 

  3. Aires-de-Sousa J (1996) Verifying wine origin: a neural network approach. Am J Enol Vitic 47(4):410–414

    Google Scholar 

  4. Vasconcelos AM, Chaves HJ (1989) Characterization of elementary wines of vitis vinifera varieties by pattern recognition of free amino acid profiles. J Agric Food Chem 37(4):931–937

    Article  Google Scholar 

  5. Beltrán NH, Duarte-Mermoud MA, Bustos MA, Salah SA, Loyola EA, Peña-Neira AI, Jalocha JW (2006) Feature extraction and classification of Chilean wines. J Food Eng 75(1):1–10

    Article  Google Scholar 

  6. Beltrán NH, Duarte-Mermoud MA, Salah SA, Bustos MA, Peña-Neira AI, Loyola EA, Jalocha JW (2005) Feature selection algorithms using Chilean wine chromatograms as examples. J Food Eng 67(4):483–490

    Article  Google Scholar 

  7. Bustos MA, Duarte-Mermoud MA, Beltrán NH, Salah SA, Loyola EA, Peña-Neira AI, Jalocha JW (2004) Classification of Chilean wines using a Bayesian approach. Viticultura/Enología Profesional 90(1):63–70 (in Spanish)

    Google Scholar 

  8. Peña-Neira A, Hernández T, García-Vallejo C, Estrella I, Suárez J (2000) A survey of phenolic compounds in Spanish wines of different geographical origins. Eur Food Res Technol 210:445–448

    Article  Google Scholar 

  9. Alamo VS (2002) Phenolic characterization of commercial Merlot and Sauvignon Blanc wines of vintage 2002 from five valleys of Chile. Agricultural engineering thesis, Faculty of Agronomical Sciences, University of Chile

  10. Muñoz LP (2002) Phenolic characterization of commercial Chilean Cabernet Sauvignon wines. Agricultural engineering thesis, Faculty of Agronomical Sciences, University of Chile

  11. Middleton RH, Goodwin GC (1990) Digital control and estimation. A unified approach. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  12. Theodoridis S, Koutroumbas K (1999) Pattern recognition. Academic Press, New York

    Google Scholar 

  13. Fleiss JL (1981) Statistical methods for rates and proportions, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  14. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Google Scholar 

  15. Fisher RA (1938) The statistical utilization of multiple measurements. Ann Eugen 8:376–386

    Google Scholar 

  16. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  17. Bustos MA, Duarte-Mermoud MA, Beltrán NH (2008) Nonlinear feature extraction using Fisher criterion. Intern J Pattern Recognit Artif Intell 22(6):1089–1119

    Article  Google Scholar 

  18. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn 34(10):2067–2070

    Article  MATH  Google Scholar 

  19. Beltrán NH, Duarte-Mermoud MA, Soto VA, Salah SA and Bustos MA (2006) Chilean wines classification based only on aroma information. In: Proceedings of World Academy of Science, Engineering and Technology, vol 12, issue 3, pp 88–93

  20. Beltrán NH, Duarte-Mermoud MA, Soto VA, Salah SA, Bustos MA (2008) Chilean wines classification using volatile organic compounds data obtained with a fast GC analyzer. IEEE Trans Instrum Meas 57(11):2421–2436

    Article  Google Scholar 

  21. Kirby M, Sirovich M (1990) Application of the Karhulen–Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  22. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  23. Capron X, Massart DL, Smeyers-Verbeke J (2007) Multivariate authentication of the geographical origin of wines: a kernel SVM approach. Eur Food Res Technol 225(3–4):559–568

    Article  Google Scholar 

  24. Thiel G, Geisler G, Blechschmidt I, Danzer K (2004) Determination of trace elements in wines and classification according to their provenance. Anal Bioanal Chem 378(6):1630–1636

    Article  Google Scholar 

  25. Alvarez I, Aleixandre JL, García MJ, Casp A, Zúnica L (2003) Geographical differentiation of white wines from three subzones of the designation of origin Valencia. Eur Food Res Technol 217(2):173–179

    Article  Google Scholar 

Download references

Acknowledgments

The results presented in this work were supported by CONYCIT-Chile, under grant FONDEF D01-1016, “Chilean Red Wine Classification by means of Intelligent Instrumentation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Duarte-Mermoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte-Mermoud, M.A., Beltrán, N.H. & Bustos, M.A. Chilean wine varietal classification using quadratic Fisher transformation. Pattern Anal Applic 13, 181–188 (2010). https://doi.org/10.1007/s10044-009-0148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-009-0148-z

Keywords