Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semi-supervised orthogonal discriminant projection for plant leaf classification

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Plant classification based on the leaf images is an important and tough task. For leaf classification problem, in this paper, a new weight measure is presented, and then a dimensional reduction algorithm, named semi-supervised orthogonal discriminant projection (SSODP), is proposed. SSODP makes full use of both the labeled and unlabeled data to construct the weight by incorporating the reliability information, the local neighborhood structure and the class information of the data. The experimental results on the two public plant leaf databases demonstrate that SSODP is more effective in terms of plant leaf classification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venters CC, Cooper DM (2000) A review of content-based image retrieval systems. Technical report, Manchester Visualization Centre, Manchester Computing, University of Manchester, Manchester, UK

  2. Smeulders AWM, Worring M, Santini S et al (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22:1349–1380

    Article  Google Scholar 

  3. Tico M, Haverinen T, Kuosmanen P (2000) A method of color histogram creation for image retrieval. In: Proceedings of the nordic signal processing symposium (NORSIG’2000), Kolmarden, Sweden, pp 157–160

  4. El-ghazal A, Basir OA, Belkasim S (2007) Shape-based image retrieval using pair-wise candidate co-ranking. Lect Notes Comput Sci 4633:650–661

    Article  Google Scholar 

  5. Park JS, Kim T-Y (2004) Shape-based image retrieval using invariant features. Advances in multimedia information processing-PCM, Berlin/Heidelberg. Lect Notes Comput Sci 2004:146–153

    Google Scholar 

  6. Abbasi S, Mokhtarian F, Kittler J (1999) Curvature scale space image in shape similarity retrieval. Multimed Syst 7:467–476

    Article  Google Scholar 

  7. Ma W, Manjunath B (1996) Texture features and learning similarity. In: Proceedings of the conference on computer vision and pattern recognition (CVPR), pp 425–430

  8. Han J, Ma K-K (2007) Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis Comput 25:1474–1481

    Article  Google Scholar 

  9. Zhang D, Aylwin Wong MI, Lu G (2000) Content based image retrieval using gabor texture features. In: Proceedings of 1st IEEE Pacific Rim Conference on Multimedia (PCM00), pp 392–395

  10. Manjunath B, Ma W (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18:837–842

    Article  Google Scholar 

  11. Liu C, Wechsler H (2001) A Gabor feature classifier for face recognition. ICCV 2:270–275

    Google Scholar 

  12. Agarwal G, Belhumeur P, Feiner S et al (2006) First steps toward an electronic field guide for plants. Taxon 55(3):597–610

    Article  Google Scholar 

  13. Kumar N, Belhumeur PN, Biswas A et al (2012) Leafsnap: a computer vision system for automatic plant species identification. Proc ECCV 2012:502–516

    Google Scholar 

  14. Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  15. Yan SC, Xu D, Zhao BY et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  16. Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis. IJCAI’07. In: Proceedings of the 20th international joint conference on Artificial intelligence, pp 708–713

  17. Li B, Wang C, Huang DS (2009) Supervised feature extraction based on orthogonal discriminant projection. Neurocomputing 73:191–196

    Article  Google Scholar 

  18. Cai D, He X, Han JW (2000) Semi-supervised discriminant analysis. IEEE 11th international conference on computer vision, pp 1–7

  19. Zhao J, Lu K, He X (2008) Locality sensitive semi-supervised feature selection. Neurocomputing 71:1842–1849

    Article  Google Scholar 

  20. Zhang SW, Lei YK, Wu YH (2011) Semi-supervised locally discriminant projection for classification and recognition. Knowl Based Syst 24:341–346

    Article  Google Scholar 

  21. Zhu L, Zhu S (2007) Face recognition based on orthogonal discriminant locality preserving projections. Neurocomputing 70:1543–1546

    Article  Google Scholar 

  22. Hu HF (2008) Orthogonal neighborhood preserving discriminant analysis for face recognition. Pattern Recogn 41:2045–2054

    Article  MATH  Google Scholar 

  23. Söderkvist, O (2001) Computer vision classification of leaves from Swedish Trees. Master Thesis, Linköping Univ., Linköping

  24. Friedman JH (1989) Regularized discriminant analysis. J Am Statist Assoc 84:165–175

    Article  MathSciNet  Google Scholar 

  25. Chang H, Yeung DY (2008) Robust path-based spectral clustering. Pattern Recogn 41:191–203

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the grants of the National Science Foundation of China (61473237 & 61272333 & 61171170), the Anhui Provincial Natural Science Foundation (1308085QF99 & 1408085MF129), Shaanxi provincial education department Foundation (2013JK1145), and the higher education development special fund of Shaanxi Private (XJ13ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Lei, Y., Zhang, C. et al. Semi-supervised orthogonal discriminant projection for plant leaf classification. Pattern Anal Applic 19, 953–961 (2016). https://doi.org/10.1007/s10044-015-0488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0488-9

Keywords