Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic identification of Scenedesmus polymorphic microalgae from microscopic images

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Microalgae counting is used to measure biomass quantity. Usually, it is performed in a manual way using a Neubauer chamber and expert criterion, with the risk of a high error rate. Scenedesmus algae can build coenobia consisting of 1, 2, 4 and 8 cells. The amount of algae of each coenobium helps to determine the amount of lipids, proteins, and other substances in a given sample of a algae crop. The knowledge of the quantity of those elements improves the quality of bioprocess applications. This paper addresses the methodology for automatic identification of Scenedesmus microalgae (used in the methane production and food industry) and applies it to images captured by a digital microscope. The use of contrast adaptive histogram equalization for pre-processing, and active contours for segmentation are presented. The calculation of statistical features (histogram of oriented gradients, Hu and Zernike moments) with texture features (Haralick and local binary patterns descriptors) are proposed for algae characterization. Classification of coenobia achieves accuracies of 98.63% and 97.32% with support vector machine and artificial neural network, respectively. According to the results, it is possible to consider the proposed methodology as an alternative to the traditional technique for algae counting. In addition, the database used for the developing of the proposed methodology is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alonso JEA (1995) Microalgas: cultivo y aplicaciones. Universidade da Corua, A Coruña

    Google Scholar 

  2. Arredondo-Vega B, Voltolina D (2007) Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noreste, SC, La Paz, BCS, México, p 97

  3. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J et al (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  Google Scholar 

  4. Cartwright GE, López JC (1973) El laboratorio en el diagnóstico hematológico. Científico-Médica

  5. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol TIST 2(3):27

    Google Scholar 

  6. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005. IEEE, vol 1, pp 886–893

  7. Dominguez GF (2014) Semi-automatic generation of accurate ground truth data in video sequences. In: 2014 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 310–315

  8. Geissmann Q (2013) OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS ONE 8(2):e54,072

    Article  Google Scholar 

  9. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education India, Delhi

    Google Scholar 

  10. Gorbi G, Torricelli E, Pawlik-Skowrońska B, di Toppi LS, Zanni C, Corradi MG (2006) Differential responses to Cr(VI)-induced oxidative stress between Cr-tolerant and wild-type strains of Scenedesmus acutus (Chlorophyceae). Aquat Toxicol 79(2):132–139

    Article  Google Scholar 

  11. Gupta S, Purkayastha S (2012) Image enhancement and analysis of microscopic images using various image processing techniques. Proc Int J Eng Res Appl 2(3):44–8

    Google Scholar 

  12. Haralick RM, Shanmugam K et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  13. He DC, Wang L (1990) Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci Remote Sens 28(4):509–512

    Article  Google Scholar 

  14. Hodaifa G, Sánchez S, Martínez ME, Órpez R (2013) Biomass production of scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Appl Energy 104:345–352

    Article  Google Scholar 

  15. Hoover A, Jean-Baptiste G, Jiang X, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB (1996) An experimental comparison of range image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 18(7):673–689

    Article  Google Scholar 

  16. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  17. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  18. Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  19. Luo Q, Gao Y, Luo J, Chen C, Liang J, Yang C (2011) Automatic identification of diatoms with circular shape using texture analysis. J Softw 6(3):428–435

    Article  Google Scholar 

  20. Mansoor H, Sorayya M, Aishah S, Mogeeb A, Mosleh A (2011) Automatic recognition system for some cyanobacteria using image processing techniques and ANN approach. In: International conference on environmental and computer science, IPCBEE, vol 19, pp 73–78

  21. Maya GC (2007) Del hemograma manual al hemograma de cuarta generación. Med Lab 13:511–50

    Google Scholar 

  22. Mery D (2011) BALU: a Matlab toolbox for computer vision, pattern recognition and image processing. http://dmery.ing.puc.cl/index.php/balu

  23. Mosleh MA, Manssor H, Malek S, Milow P, Salleh A (2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinform 13(Suppl 17):S25

    Google Scholar 

  24. Nazlibilek S, Karacor D, Ercan T, Sazli MH, Kalender O, Ege Y (2014) Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 55:58–65

    Article  Google Scholar 

  25. Powers DM (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation

  26. Quevedo OC, Morales VSP, Acosta CA (2008) Crecimiento de scenedesmus sp en diferentes medios de cultivo para la producción de proteína microalgal. Vitae 15(1):25–31

    Google Scholar 

  27. Rasband W (2012) ImageJ: image processing and analysis in Java. Astrophysics Source Code Library

  28. Rückstieß T, Osendorfer C, van der Smagt P (2011) Sequential feature selection for classification. In: Australasian joint conference on artificial intelligence. Springer, pp 132–141

  29. Saki F, Tahmasbi A, Soltanian-Zadeh H, Shokouhi SB (2013) Fast opposite weight learning rules with application in breast cancer diagnosis. Comput Biol Med 43(1):32–41

    Article  Google Scholar 

  30. Santhi N, Pradeepa C, Subashini P, Kalaiselvi S (2013) Automatic identification of algal community from microscopic images. Bioinform Biol Insights 7:327

    Article  Google Scholar 

  31. Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on zernike moments. Comput Biol Med 41(8):726–735

    Article  Google Scholar 

  32. Teague MR (1980) Image analysis via the general theory of moments. JOSA 70(8):920–930

    Article  MathSciNet  Google Scholar 

  33. Terry PA, Stone W (2002) Biosorption of cadmium and copper contaminated water by scenedesmus abundans. Chemosphere 47(3):249–255

    Article  Google Scholar 

  34. Thiel SU, Wiltshire RJ, Davies LJ (1995) Automated object recognition of blue-green algae for measuring water quality—a preliminary study. Water Res 29(10):2398–2404

    Article  Google Scholar 

  35. vision lab UdeA C (2015) A microalgae database of scenedesmus. http://goo.gl/6pyT6A. Accessed 13 Sept 2016

  36. Vega BOA, Lobina DV (2007) Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noroeste, La Paz

    Google Scholar 

  37. Walker RF, Ishikawa K, Kumagai M (2002) Fluorescence-assisted image analysis of freshwater microalgae. J Microbiol Methods 51(2):149–162

    Article  Google Scholar 

  38. Wang L, He DC (1990) Texture classification using texture spectrum. Pattern Recogn 23(8):905–910

    Article  Google Scholar 

  39. Wu C, Wang W, Yue L, Yang Z, Fu Q, Ye Q (2013) Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. Bioresour Technol 140:120–125

    Article  Google Scholar 

  40. Zernike VF (1934) Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7–12):689–704

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhony-Heriberto Giraldo-Zuluaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldo-Zuluaga, JH., Salazar, A., Diez, G. et al. Automatic identification of Scenedesmus polymorphic microalgae from microscopic images. Pattern Anal Applic 21, 601–612 (2018). https://doi.org/10.1007/s10044-017-0662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-017-0662-3

Keywords