Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Description of a GIS-based rockfall hazard assessment methodology and its application in mountainous sites

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In Western Greece, rockfalls occur every year in residential areas and on public roads, causing considerable societal and economic damage. As a result, rockfall hazard assessment is a necessity and can be a very important tool for scientists, planners, decision makers, and local authorities. In the current study, a GIS-based rockfall hazard assessment methodology is presented as a decision model for preventing rockfall threat in residential areas and public roads. This methodology is based on a specific hazard matrix developed for quantitative evaluation of the rockfall hazard in three stages: inventory, intensity, and hazard. The proposed methodology is applied in two mountainous sites located in Western Greece, Santomeri village and Klokova road passage. The final established rockfall hazard maps for both sites seem to be very accurate, and the methodology can therefore be applied in other areas as well and used as a prevention planning tool against rockfall hazardous events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40(4):455–471

    Article  Google Scholar 

  • Battistini A, Rosi A, Segoni S, Lagomarsino D, Catani F, Casagli N (2017) Validation of landslide hazard models using a semantic engine on online news. Appl Geogr 82:59–65. https://doi.org/10.1016/j.apgeog.2017.03.003

    Article  Google Scholar 

  • Bianchini S, Solari L, Casagli N (2017) A GIS-based procedure for landslide intensity evaluation and specific risk analysis supported by persistent Scatterers interferometry (PSI). Remote Sens 9(11):art. no. 1093. https://doi.org/10.3390/rs9111093

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. John Wiley & Sons, New York. 251 p

  • Budetta P (2004) Assessment of rock fall risk along roads. Nat Hazards Earth Syst Sci 4:71–81

    Article  Google Scholar 

  • Calvello M, Cascini L, Mastroianni S (2013) Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology 182:33–48. https://doi.org/10.1016/j.geomorph.2012.10.026

    Article  Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to estimate landslide hazard and risk in urban and rural areas in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2(1):57–72

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 135–175

    Chapter  Google Scholar 

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS Technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2-3):117–135

    Article  Google Scholar 

  • Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide risk management. Taylor and Francis, London, pp 199–235

    Google Scholar 

  • Cascini L, Di Nocera S, Calvello M, Cuomo S, Ferlisi S, Matano F (2013) Hyperconcentrated flow susceptibility analysis and zoning at medium scale: methodological approach and case study. Landslide Science and Practice 1:395–401. https://doi.org/10.1007/978-3-642-31325-7_52

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the Principality of Andorra. Nat Hazards 30:421–435

    Article  Google Scholar 

  • Corominas J, Van Westen CJ, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Article  Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 3–26

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:99–111. https://doi.org/10.1016/j.enggeo.2008.03.014

    Article  Google Scholar 

  • Fernandez T, Irigaray C, Hamdouni RE, Chacon J (2003) Methodology for landslide susceptibility mapping by means of a GIS, application to the Contraviesa area (Granada, Spain). Nat Hazards 30:297–308. https://doi.org/10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Flentje P, Chowdhury R (2018) Resilience and sustainability in the management of landslides. Proceedings of the Institution of Civil Engineers - Engineering Sustainability 171(1):3–14

    Article  Google Scholar 

  • Frattini P, Crosta GB, Agliardi F, Imposimato S (2013) Challenging calibration in 3D rockfall modelling. Landslide Science and Practice: Spatial analysis and Modelling 3:169–175

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River basin, Central Italy. Environ Manag 25(3):247–363

    Article  Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093. https://doi.org/10.1016/S0098-3004(02)00025-0

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3(6):491–503

    Article  Google Scholar 

  • Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: Proceedings of the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, ARMA13-672, pp 1–8

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanisms, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 99–128

    Chapter  Google Scholar 

  • Kaur H, Gupta S, Parkash S, Thapa R (2018) Application of geospatial technologies for multi-hazard mapping and characterization of associated risk at local scale. Ann GIS 24(1):33–46. https://doi.org/10.1080/19475683.2018.1424739

    Article  Google Scholar 

  • Kolat C, Doyuran V, Ayday C, Suzen ML (2006) Preparation of a geotechnical microzonation model using GIS systems based on multicriteria decision analysis. Eng Geol 87:241–255. https://doi.org/10.1016/j.enggeo.2006.07.005

    Article  Google Scholar 

  • Koukouvelas I, Litoseliti A, Nikolakopoulos K, Zygouri V (2015) Earthquake triggered rock falls and their role in the development of a rock slope: the case of Skolis Mountain, Greece. Eng Geol 191:71–85. https://doi.org/10.1016/j.enggeo.2015.03.011

    Article  Google Scholar 

  • Lainas S, Koulouris S, Vagenas S, Depountis N, Sabatakakis N, Koukis G (2010) Earthquake-induced rockfalls in Santomeri Village, Western Greece. Bull of Geological Society of Greece, Proc of the 12th Intern Congress, Patras, XLIII, No 3: 1210–1219

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76(1-2):109–128. https://doi.org/10.1016/j.enggeo.2004.06.009

    Article  Google Scholar 

  • Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modelling. Comput Geosci 33:262–279. https://doi.org/10.1016/j.cageo.2006.05.013

    Article  Google Scholar 

  • Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320

    Article  Google Scholar 

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford Limited, London. 454 p

    Book  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38:199–220

    Article  Google Scholar 

  • Leroi E (1996) Landslide hazard – risk maps at different scales: objectives, tools and developments. In: Senneset K (ed) Proceedings of the International Symposium on Landslides, Trondheim, pp 35–52

  • Leroi E, Bonnard C, Fell R, McInnes R (2005) Risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 159–198

    Google Scholar 

  • Liu YC, Chen CS (2007) A new approach for application of rock mass classification on rock slope stability assessment. Eng Geol 89:129–143

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711

    Article  Google Scholar 

  • Mancini F, Ceppi C, Ritrovato G (2010) GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat Hazards Earth Syst Sci 10:1851–1864. https://doi.org/10.5194/nhess-10-1851-2010

    Article  Google Scholar 

  • Mandal S, Maiti R (2015) Semi-quantitative approaches for landslide assessment and prediction, pp 1–292. https://doi.org/10.1007/978-981-287-146-6

    Book  Google Scholar 

  • Marinos P, Hoek E (2000) GSI – a geologically friendly tool for rock mass strength estimation. In: Proc. GeoEng2000 conference, Melbourne, pp 1422–1442

  • Nikolakopoulos K, Depountis N, Vagenas N, Kavoura K, Vlachaki E, Kelasidis G, Sabatakakis N (2015) Rockfall risk evaluation using geotechnical survey, remote sensing data and GIS. A case study from western Greece. Proc SPIE 9535(953518):1–8

    Google Scholar 

  • Palma B, Parise M, Reichenbach P, Guzzetti F (2012) Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy. Nat Hazards 61:187–201. https://doi.org/10.1007/s11069-011-9899-0

    Article  Google Scholar 

  • Palmstrom A (1982) The volumetric joint count - a useful and simple measure of the degree of rock mass jointing. IAEG Congress, New Delhi, pp V.221–V.228

    Google Scholar 

  • Pantelidis L (2009) Rock slope stability assessment through rock mass classification systems. Int J Rock Mech Min Sci 46(2):315–325

    Article  Google Scholar 

  • Paulin GL, Bursik M, Hubp JL, Mejia LMP, Quesada FA (2014) A GIS method for landslide inventory and susceptibility mapping in the Rio El Estado watershed, Pico de Orizaba volcano, Mexico. Nat Hazards 71:229–241. https://doi.org/10.1007/s11069-013-0911-8

    Article  Google Scholar 

  • Pfeiffer TJ, Bowen TD (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  • Picarelli L, Oboni F, Evans SG, Mostyn G, Fell R (2005) Hazard characterization and quantification. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 27–62

    Google Scholar 

  • Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system implementation manual. In: Report FHWAOR-EG-90-01. Federal Highway Administration, US Department of Transportation. 80 p

  • Pinheiro M, Sanches S, Miranda T, Neves A, Tinoco J, Ferreira A, Correia AG (2015) A new empirical system for rock slope stability analysis in exploitation stage. Int J Rock Mech Min Sci 76:182–191

    Article  Google Scholar 

  • RamSoil (2011) Risk assessment methods of landslides. In: Malet JP, Maquaire O (eds) Sixth framework programme, scientific support to policies

  • Reichenbach P, Galli M, Cardinali M, Guzzetti F, Ardizzone F (2005) Geomorphologic mapping to assess landslide risk: concepts, methods and applications in the Umbria Region of Central Italy. In: Glade T, Anderson MG, Crozier MJ (eds) Landslide risk assessment. Wiley, pp 429–468

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  • Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: Proceedings of the International Symposium on the Role of Rock Mechanics, pp 49–53

  • Romana M (1995) The geomechanical classification SMR for slope correction. In: Proc int congress on rock mechanics, vol 3, pp 1085–1092

  • Sabatakakis N, Depountis N, Vagenas N (2014) Evaluation of rockfall restitution coefficients. In: Lollino G et al (eds) Engineering geology for society and territory – volume 2. Springer, pp 2023–2016. https://doi.org/10.1007/978-3-319-09057-3_359

    Chapter  Google Scholar 

  • SafeLand (2010) Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies. 7th Framework Programme Cooperation Theme 6 Environment (including climate change). Sub-Activity 6.1.3 Natural Hazards. Work Package 2.1 - Harmonization and development of procedures for quantifying landslide hazard

  • Schneuwly DM, Stoffel M (2008) Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years – a case study using dendrogeomorphology. Geomorpgology 102:522–531. https://doi.org/10.1016/j.geomorph.2008.05.043

    Article  Google Scholar 

  • Stevens W.D. (1998) RockFall: a tool for probabilisitc analysis, design of remedial measures and prediction of rockfalls. MSc Thesis, Dept of civil engineering, University of Toronto, Ontario

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – why is still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ and the International Association of Engineering Geology Commission on Landslides and Other Mass-Movements (1984) Landslide hazard zonation: a review of principles and practice. Natural Hazards, vol 3, Paris, France. UNESCO, 63p

  • Wong HN (2005) Landslide risk assessment for individual facilities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 237–298

    Google Scholar 

  • Wyllie DC, Mah CW (2004) Rock slope engineering: civil and mining, 4th edn. Spon Press, London. 431 p

    Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey) and susceptibility mapping by means of GIS. Environ Geol 50:461–472. https://doi.org/10.1007/s00254-005-0107-y

    Article  Google Scholar 

  • Yilmaz I, Yildirim M, Keskin I (2008) A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ 67:547–554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Depountis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depountis, N., Nikolakopoulos, K., Kavoura, K. et al. Description of a GIS-based rockfall hazard assessment methodology and its application in mountainous sites. Bull Eng Geol Environ 79, 645–658 (2020). https://doi.org/10.1007/s10064-019-01590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01590-3

Keywords