Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dietary mung bean as promising food for human health: gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics—an update

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Plant-based functional foods have gained wider attention in current scenario with mung bean harboring several bioactive compounds with promising gut health benefits and pharmacological importance. Consumption of mung bean has a positive impact on beneficial gut microbes and microbial metabolite production. The effects of dietary mung bean on gut microbial homeostasis and the management of gut-related diseases along with the possible mechanism of action, have been highlighted through this review paving a way for a promising role of dietary mung bean as a functional food in the management of gut-related diseases for example mung bean peptides can help not only in treating prediabetes but also delaying the aging process by targeting the intestinal microflora. In addition, expanding our knowledge of how diets affect host health and disease, including the effects of mung bean dietary components on gut microbiota-derived metabolites, will eventually allow for the development of tailored diets and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aurigemma NC, Koltun KJ, VanEvery H, Rogers CJ, De Souza MJ. Linking the gut microbiota to bone health in anorexia nervosa. Current Osteoporosis Reports. 16: 65-75 (2018)

    Article  PubMed  Google Scholar 

  • Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 67: 1716-1725 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease. 26: 26191 (2015)

    Article  PubMed  Google Scholar 

  • Charoensiddhi S, Chanput WP, Sae-Tan S. Gut microbiota modulation, anti-diabetic and anti inflammatory properties of polyphenol extract from mung bean seed coat (Vigna radiata L.). Nutrients. 14: 2275 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’connor EM, Cusack S, Harris H, Coakley M, Lakshminarayanan B, O’sullivan O, Fitzgerald GF. Gut microbiota composition correlates with diet and health in the elderly. Nature. 488: 178-184 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 3: 17001 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien M, Veiga P. Rethinking diet to aid human–microbe symbiosis. Trends in Microbiology. 25: 100-112 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Esgalhado M, Kemp JA, Damasceno NR, Fouque D, Mafra D. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiology. 12: 1413-1425 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients. 11: 1238 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou D, Zhao Q, Yousaf L, Chen B, Xue Y, Shen Q. A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Food Function. 11: 5525-5537 (2020)

    Article  CAS  Google Scholar 

  • Hou D, Zhao Q, Chen B, Ren X, Yousaf L, Shen Q. Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high‐fat diet and streptozotocin‐induced prediabetic mice. Journal of Food Science. 86: 4183-4196 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Hou D, Tang J, Huan M, Liu F, Zhou S, Shen Q. Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. Food Science and Human Wellness. 11: 1259-1272 (2022)

    Article  CAS  Google Scholar 

  • Jang YH, Kang MJ, Choe EO, Shin M, Kim JI. Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Science and Biotechnology. 23: 247-252 (2014)

    Article  CAS  Google Scholar 

  • Ketha K, Gudipati M. Immunomodulatory activity of non starch polysaccharides isolated from green gram (Vigna radiata). Food Research International. 113: 269-276 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Ladurner A, Schachner D, Schueller K, Pignitter M, Heiss EH, Somoza V, Dirsch VM. Impact of trans-resveratrol-sulfates and-glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules. 19: 16724-16736 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacological Research Communications. 61: 219-225 (2010)

    Article  CAS  Google Scholar 

  • Li L, Tian Y, Zhang S, Feng Y, Wang H, Cheng X, Ma Y, Zhang R, Wang C. Regulatory effect of mung bean peptide on prediabetic mice induced by high-fat diet. Frontiers in Nutrition. 9: 913016 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber‐rich foods. Comprehensive Reviews in Food Science and Food Safety. 19: 1268-1298 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Morgan XC, Huttenhower C. Human microbiome analysis. PLOS Computational Biology. 8: e1002808 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochemical and Biophysical Research Communications. 501: 955-961 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Nugues MM, Roberts CM. Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs. 22: 507-516 (2003)

    Article  Google Scholar 

  • Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews. 279: 70-89 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Seminars in Cancer Biology. 1:1-8 (2018)

    Article  Google Scholar 

  • Rajpoot M, Bhattacharya R, Sharma S, Gupta S, Sharma V, Sharma AK. Melamine contamination and associated health risks: gut microbiota does make a difference. Biotechnology and Applied Biochemistry. 68: 1271-1280 (2021)

    CAS  PubMed  Google Scholar 

  • Ray SK, Mukherjee S. Evolving interplay between dietary polyphenols and gut microbiota—an emerging importance in healthcare. Frontiers in Nutrition. 8: 634944 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Salonen A, de Vos WM. Impact of diet on human intestinal microbiota and health. Annual Review of Food Science and Technology. 5: 239-262 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RI, Cryan JF, Burnet PW. The microbiome in psychology and cognitive neuroscience. Trends in Cognitive Sciences. 22: 611-636 (2018)

    Article  PubMed  Google Scholar 

  • Sehrawat N, Yadav M, Kumar S, Upadhyay SK, Singh M, Sharma AK. Review on health promoting biological activities of mungbean: a potent functional food of medicinal importance. Plant Archives. 20: 2969-2975 (2020)

    Google Scholar 

  • Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology. 24-36 (2021a)

    Article  CAS  PubMed  Google Scholar 

  • Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F. Human gut microbiota: toward an ecology of disease. Frontiers in Microbiology. 8: 1265 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Sankhyan A, Varshney A, Choudhary R, Sharma AK. Current paradigms to explore the gut microbiota linkage to neurological disorders. Neurology. 8: 68-79 (2020)

    Google Scholar 

  • Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK, Sharma AK. Microbiome dysbiosis in cancer: exploring therapeutic strategies to counter the disease. Seminars in Cancer Biology. 61-70 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Shen CY, Hao YF, Hao ZX, Liu Q, Zhang L, Jiang CP, Jiang JG. Flavonoids from Rosa davurica pall fruits prevent high-fat diet-induced obesity and liver injury via modulation of the gut microbiota in mice. Food & Function. 12: 10097-10106 (2021)

    Article  CAS  Google Scholar 

  • Shen X, Jiang X, Qian L, Zhang A, Zuo F, Zhang D. Polyphenol extracts from germinated mung beans can improve type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation. Frontiers in Nutrition. 9: 846409 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigwela V, De Wit M, du Toit A, Osthoff G, Hugo A. Bioactive betalain extracts from cactus pear fruit pulp, beetroot tubers, and amaranth leaves. Molecules. 26: 5012 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg JL, Bäckhed F. Diet–microbiota interactions as moderators of human metabolism. Nature. 535: 56-64 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, Kahleova H. The effects of vegetarian and vegan diets on gut microbiota. Frontiers in Nutrition. 6: 47 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. British Medical Journal. 361 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Vamanu E, Gatea F, Avram I, Radu GL, Singh SK. Dysbiotic gut microbiota modulation by aronia fruits extract administration. Life. 13: 32 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Immerseel F, Ducatelle R, De Vos M, Boon N, Van De Wiele T, Verbeke K, Rutgeerts P, Sas B, Louis P, Flint HJ. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. Microbiology Society. 59:141-143 (2010)

    Google Scholar 

  • Wang T, Han Y, Li H, Wang Y, Chen X, Chen W, Qiu X, Gong J, Li W, Zhu T. Proinflammatory lipid signals trigger the health effects of air pollution in individuals with prediabetes. Environmental Pollution. 290: 118008 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang Y, Shi Z, Zhou N, Ren G, Hao X, Zou L, Yao Y. Mung bean protein suppresses undernutrition-induced growth deficits and cognitive dysfunction in rats via gut microbiota-TLR4/NF-kB pathway. Journal of Agricultural and Food Chemistry. 69: 12566-12577 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Zhang Q, Yu L, Tian F, Chen W, Zhai Q. Effects of vegetarian diet-associated nutrients on gut microbiota and intestinal physiology. Food Science and Human Wellness. 11: 208-217 (2022)

    Article  CAS  Google Scholar 

  • Xie J, Song Q, Yu Q, Chen Y, Hong Y, Shen M. Dietary polysaccharide from mung bean [Vigna radiate (Linn.) Wilczek] skin modulates gut microbiota and short‐chain fatty acids in mice. International Journal of Food Science. 57: 2581-2589 (2022a)

    Article  CAS  Google Scholar 

  • Xie J, Sun N, Huang H, Xie J, Chen Y, Hu X, Hu X, Dong R, Yu Q. Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chemistry. 396: 133719 (2022b)

    Article  CAS  PubMed  Google Scholar 

  • Yang QQ, Ge YY, Gunaratne A, Kong KW, Li HB, Gul K, Kumara K, Arachchi LV, Zhu F, Corke H, Gan RY. Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka. Food Bioscience. 37: 100705 (2020)

    Article  CAS  Google Scholar 

  • Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences. 16: 7493-7519 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Ma YT, Feng YC, Wang CY, Zhang DJ. Potential effects of mung bean protein and a mung bean protein–polyphenol complex on oxidative stress levels and intestinal microflora in aging mice. Food & Function. 13: 186-197 (2022)

    Article  CAS  Google Scholar 

  • Zhang S, Wang CA, Liu S, Wang Y, Lu S, Han S, Jiang H, Liu H, Yang Y. Effect of dietary phenylalanine on growth performance and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) in low fishmeal diets. Frontiers in Nutrition. 10: 1008822 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Fu Y, Zhang F, Wang C, Yang X, Bai S, Xue Y, Shen Q. Heat‐treated adzuki bean protein hydrolysates reduce obesity in mice fed a high‐fat diet via remodeling gut microbiota and improving metabolic function. Molecular Nutrition & Food Research. 66: 2100907 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (MY, NS and AKS) acknowledge the help and support by Head, Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India. KD, SCC, DC, SC and AD acknowledge their respective Institutes as well.

Funding

No funding was received for the said manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MY, NS did most of the writing part and making figures. VS made the table and helped in designing figures as well. KD, DC, AD, SC, SCC were involved in planning, updating, fine tuning, critical editing and reviewing; AKS was involved in conceptualization, analysis, supervision along with concluding the manuscript. All the authors reviewed the manuscript critically.

Corresponding authors

Correspondence to Anil Kumar Sharma or Kuldeep Dhama.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehrawat, N., Yadav, M., Sharma, A.K. et al. Dietary mung bean as promising food for human health: gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics—an update. Food Sci Biotechnol 33, 2035–2045 (2024). https://doi.org/10.1007/s10068-023-01495-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01495-8

Keywords