Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conditioning of polynomial Fourier sums

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In order to measure the stability properties of Fourier sums, we introduce a conditioning of a representation of the solution of the least squares problem. We relate the conditioning of the discrete polynomial Fourier sums with the corresponding continuous one. We study the asymptotic growth of the conditioning in terms of the degree n. For Fourier–Legendre sums, it is \(O(n^{3/2})\). In the case of Fourier–Chebyshev sums, it is linear in the degree. For Fourier sums with Chebyshev polynomials of the second kind, it is \(O(n^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. National Bureau of Standards Applied Mathematics Series, Washington (1972)

    MATH  Google Scholar 

  2. Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  3. Carnicer, J.M., Khiar, Y., Peña, J.M.: Optimal stability of the Lagrange formula and conditioning of the Newton formula. J. Approx. Theory 238, 52–66 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. AMS Chelsea Publishing, Providence (1982)

    MATH  Google Scholar 

  5. Cheney, E.W., Light, W.: A Course in Approximation Theory. Brooks/Cole Publishing Company, Pacific Groove (2000)

    MATH  Google Scholar 

  6. de Boor, C.: Splinefunktionen. Birkhäuser, Basel (1990)

    Book  Google Scholar 

  7. Faber, G.: Über die interpolatorische Darstellung stetiger Funktionen. DMV 23, 192–210 (1914)

    MATH  Google Scholar 

  8. Lebesgue, H.: Sur les intégrales singulières. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 1, 25–117 (1909)

    MathSciNet  MATH  Google Scholar 

  9. Nikolaev, V.F.: Concerning the approximation of continuous functions by polynomials. Doklady Akad. Nauk SSSR 61, 201–204 (1948)

    MathSciNet  Google Scholar 

  10. Rivlin, T.J.: Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, Pure and Applied Mathematics (New York). Wiley, New York (1990)

    Google Scholar 

  11. Rudin, W.: Real and Complex Analysis. Mac Graw-Hill, London (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Khiar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by MTM2015-65433-P (MINECO/FEDER) Spanish Research Grant, by Gobierno de Aragon E41_17R and Feder 2014-2020 “Construyendo Europa desde Aragon”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnicer, J.M., Khiar, Y. & Peña, J.M. Conditioning of polynomial Fourier sums. Calcolo 56, 24 (2019). https://doi.org/10.1007/s10092-019-0323-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0323-6

Keywords

Mathematics Subject Classification