Abstract
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show that simple extensions of these techniques lead to methods for generating convex quadratic cuts. Gomory cuts for mixed 0-1 conic programs have interesting implications for comparing the semidefinite programming and the linear programming relaxations of combinatorial optimization problems, e.g. we show that all the subtour elimination inequalities for the traveling salesman problem are rank-1 Gomory cuts with respect to a single semidefinite constraint. We also include results from our preliminary computational experiments with these cuts.
Similar content being viewed by others
References
Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1), 13–51, (1995)
Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Prog. 95 (1, Ser. B), 3–51 2003
Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Disc. Appl. Math. 119 (1-2), 79–106 (2002)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung, ICM III:645–656, 1998
Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)
Balas, E., Ceria, S., Cornuéjols., G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)
Barahona, F., Mahjoub., A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
Ben-Tal, A., Margalit, T., Nemirovski, A.: Robust modeling of multi-stage portfolio problems. In: High performance optimization, pp 303–328. Kluwer Acad. Publ., Dordrecht, 2000
Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23 (4), 769–805 (1998)
Benson, H.Y., Vanderbei., R.J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math. Prog. 95 (2 ser. B), 279–302 (2003)
Bixby, R.E., Ceria, S., McZeal, C.M., Savelsberg, M.W.P.: A mixed integer programming library: MIPLIB3.0. Available at http://www.caam.rice.edu/~bixby/miplib/miplib.html.
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA, 1994
Çezik, M.T.: Semidefinite methods for the traveling salesman and other combinatorial problems. PhD thesis, IEOR Dept., Columbia University, 2000
Çezik, M.T., Iyengar, G.: Quadratic cuts for mixed 0-1 quadratic programs. Technical Report TR-2001-02, CORC, IEOR Dept., Columbia University, 2001. Available at http://www.corc.ieor.columbia.edu/reports/techreports/tr-2001- 02.ps.gz
Cvetković, D., Čangalović, M., Kovačević-Vujčić, V.: Semidefinite programming methods for the symmetric traveling salesman problem. In: IPCO VII (Graz, 1999), pp 126–136. Springer, Berlin, 1999
El Ghaoui, L., Oustry, F., Lebret., H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1), 33–52 (1998)
Goemans., M.: Semidefinite programming in combinatorial optimization. Math. Prog. 79, 143–161 (1997)
Goemans, M., Rendl, F.: Combinatorial optimization. In: Handbook of Semidefinite Programming. Kluwer, 2000
Goemans, M., Williamson., D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Goldfarb, D.: The simplex method for conic programming. Technical Report TR-2002-05, CORC, IEOR Dept., Columbia University, 2002. Available at http://www.corc.ieor.columbia.edu/reports/techreports/tr-2002-05.ps
Goldfarb, D., Iyengar., G.: Robust portfolio selection problems. Math. Oper. Res. 28 (1), 1–38 (2003)
Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: The sharpest cut, MPS/SIAM Ser. Optim., pages 233–256. SIAM, Philadelphia, PA, 2004
Helmberg, C., Rendl., F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Prog. 82 (3), 291–315 (1998)
Karloff., H.: How good is the Goemans-Williamson maxcut algorithm. SIAM J. Comp. 29 (1), 336–350 (1999)
Lasserre., J.B.: Global optimization with polynomials and the methods of moments. SIAM J. Optim. 1, 796–817 (2001)
Laurent., M.: A comparison of Sherali-Adams, Lovász-Schrijver and lasserre relaxations for 0-1 programming. Math. Oper. Res. 28 (3), 470–496 (2003)
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds).: The traveling salesman problem. John Wiley & Sons Ltd., Chichester, 1990
Lemke, C., Spielberg., K.: A capital budgeting heuristic algorithm using exchange operations. AIEE Transactions 6, 264–280 (1974)
Lobo, M.S., Fazel, M., Boyd, S.: Portfolio optimization with linear and fixed transaction costs and bounds on risk. Under review in Ann. Oper. Res. Available at http://www.stanford.edu/~boyd/reports/portfolio.pdf.
Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret., H.: Applications of second-order cone programming. Linear Algebra Appl., 284 (1 (3), 193–228 (1998)
Lovász, L., Schrijver., A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1 (2), 166–190 (1991)
Mitchell., J.B.: Fixing variables and generating classical cutting planes when using an interior point branch-and-cut method to solve integer programming problems. Eur. J. Oper. Res. 97, 139–148 (1997)
Mitchell., J.B.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim. 10 (4), 1212–1227 (2000)
Mitchell, J.B., Borchers, B.: Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. In: High performance optimization, pp 349–366. Kluwer Acad. Publ., Dordrecht, 2000
Mitchell., J.E.: Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problems. J. Comb. Opt. 5 (2), 151–166 (2001)
Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience series in Discrete Mathematics. John Wiley & Sons, Inc., 1999
Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia, 1993
Petersen., C.: Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Mgmt. Sc. 13, 736–750 (1967)
Reinelt., G.: TSPLIB— A traveling salesman problem library. ORSA J. Comp. 3 (4), 376–384 (1991)
Sherali, H.D., Adams., W.P.: A hierarchy of relaxations between the continuous and convex hull representations of zero-one programming problems. SIAM J. Disc. Math. 3, 411–430 (1990)
Sherali, H.D., Adams., W.P.: A hierarchy of relaxations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994)
Stubbs, R.A., Mehrotra., S.: A branch-and-cut method for 0-1 mixed convex programming. Math. Prog. 86, 515–532 (1999)
Stubbs, R.A., Mehrotra., S.: Generating convex polynomial inequalities for mixed 0-1 programs. J. Global Optim. 24 (3), 311–332 (2002)
Stürm., J.: Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 625 (653), 11–12 (1999)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review, 1996
Author information
Authors and Affiliations
Corresponding author
Additional information
Research partially supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514.
Rights and permissions
About this article
Cite this article
Çezik, M., Iyengar, G. Cuts for mixed 0-1 conic programming. Math. Program. 104, 179–202 (2005). https://doi.org/10.1007/s10107-005-0578-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-005-0578-3