Abstract.
A variety of nonlinear, including semidefinite, relaxations have been developed in recent years for nonconvex optimization problems. Their potential can be realized only if they can be solved with sufficient speed and reliability. Unfortunately, state-of-the-art nonlinear programming codes are significantly slower and numerically unstable compared to linear programming software.
In this paper, we facilitate the reliable use of nonlinear convex relaxations in global optimization via a polyhedral branch-and-cut approach. Our algorithm exploits convexity, either identified automatically or supplied through a suitable modeling language construct, in order to generate polyhedral cutting planes and relaxations for multivariate nonconvex problems. We prove that, if the convexity of a univariate or multivariate function is apparent by decomposing it into convex subexpressions, our relaxation constructor automatically exploits this convexity in a manner that is much superior to developing polyhedral outer approximators for the original function. The convexity of functional expressions that are composed to form nonconvex expressions is also automatically exploited.
Root-node relaxations are computed for 87 problems from globallib and minlplib, and detailed computational results are presented for globally solving 26 of these problems with BARON 7.2, which implements the proposed techniques. The use of cutting planes for these problems reduces root-node relaxation gaps by up to 100% and expedites the solution process, often by several orders of magnitude.
Similar content being viewed by others
References
Audet, C., Hansen, P., Jaumard, B., Savard, G. : A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Prog. 87, 131–152 (2000)
Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Plenum Press, 1988
Böröczky K.Jr., Reitzner,M.: Approximation of smooth convex bodies by random circumscribed polytopes. Annals of Applied Probability 14, 239–273 (2004)
Bussieck, M.R.: MINLP World. http://www.gamsworld.org/minlp/index.htm 2002
Chinneck, J.W.: Discovering the characteristics of mathematical programming via sampling. Optimization Methods and Software 17, 319–352 (2002)
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Prog. 36, 307–339 (1986)
Fourer, R., Moré, J., Munson, T., Sarich, J.: Next-generation servers for optimization as an internet resource. Available at http://iems.nwu.edu/~4er 2004
Griewank, A.: Evaluating derivatives. Principles and Techniques of Algorithmic Differentiation, vol 19 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2000
Griffith, R.E., Stewart, R.A.: A nonlinear programming technique for the optimization of continuous processing systems. Management Science 7, 379–392 (1961)
Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Mathematicum 5, 521–538 (1993)
Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer-Verlag, Berlin, 1993
Kelley, J.E.: The cutting plane method for solving convex programs. Journal of the SIAM 8, 703–712 (1960)
Maheshwari, C., Neumaier, A., Schichl, H.: Convexity and concavity detection. Available at http://www.mat.univie.ac.at/~herman/techreports/D12convconc.ps 2003
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Prog. 10, 147–175 (1976)
Meeraus, A.: GLOBAL World. http://www.gamsworld.org/global/index.htm 2002
Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. Habilitation thesis Humboldt-Universität zu Berlin, Germany, 2004
Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Computing 48, 337–361 (1992)
Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel techniques for constructing convex envelopes of nonlinear functions. Journal of Global Optimization 20, 137–158 (2001)
Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Mathematical Programming 93, 247–263 (2002)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht, 2002
Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Prog. 99, 563–591 (2004)
Vandenbussche, D.: Polyhedral Approaches to Solving Nonconvex Quadratic Programs. PhD thesis, Georgia Institute of Technology, Department of Indystrial and Systems Engineering, Atlanta, GA, 2003
Zamora, J.M., Grossmann, I.E.: A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Computers & Chemical Engineering 22, 367–384 (1998)
Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. Journal of Global Optimization 14, 217–249 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was supported in part by ExxonMobil Upstream Research Company, the National Science Foundation under awards DMII 0115166 and CTS 0124751, and the Joint NSF/NIGMS Initiative to Support Research in the Area of Mathematical Biology under NIH award GM072023.
Rights and permissions
About this article
Cite this article
Tawarmalani, M., Sahinidis, N. A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-005-0581-8