Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A sparse proximal implementation of the LP dual active set algorithm

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present an implementation of the LP Dual Active Set Algorithm (LP DASA) based on a quadratic proximal approximation, a strategy for dropping inactive equations from the constraints, and recently developed algorithms for updating a sparse Cholesky factorization after a low-rank change. Although our main focus is linear programming, the first and second-order proximal techniques that we develop are applicable to general concave–convex Lagrangians and to linear equality and inequality constraints. We use Netlib LP test problems to compare our proximal implementation of LP DASA to Simplex and Barrier algorithms as implemented in CPLEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen E.D., Andersen K.D. (1995) Presolving in linear programming. Math. Program. 71, 221–245

    MathSciNet  Google Scholar 

  2. Bergounioux M., Kunisch K. (2002) Primal-dual strategy for state-constrained optimal control problem. Comput. Optim. Appl. 22, 193–224

    Article  MATH  MathSciNet  Google Scholar 

  3. Bixby R.E. (1994) Progress in linear programming. ORSA J. Comput. 6, 15–22

    MATH  MathSciNet  Google Scholar 

  4. Björck A., Elfving T. (1979) Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT 19, 145–163

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarke F.H. (1975) Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262

    Article  MATH  Google Scholar 

  6. Davis T.A. (2005) Algorithm 849: a concise sparse Cholesky factorization package. ACM Trans. Math. Softw. 31, 587–591

    Article  Google Scholar 

  7. Davis T.A., Gilbert J.R., Larimore S.I., Ng E.G. (2004) Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis T.A., Gilbert J.R., Larimore S.I., Ng E.G. (2004) A column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 353–376

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis T.A., Hager W.W. (1999) Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20, 606–627

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis T.A., Hager W.W. (2001) Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 997–1013

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis T.A., Hager W.W. Dual multilevel optimization, to appear in Mathematical Programming University of Florida (2004)

  12. Davis T.A., Hager W.W. (2005) Row modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 26, 621–639

    Article  MATH  MathSciNet  Google Scholar 

  13. Davis, T.A., Hager, W.W., Chen, Y.C., Rajamanickam, S. CHOLMOD: a sparse Cholesky factorization and modification package, ACM Trans. Math. Softw. (2006) (in preparation)

  14. Dongarra J.J., Du Croz J.J., Duff I.S., Hammarling S. (1990) A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16, 1–17

    Article  MATH  Google Scholar 

  15. Ekeland, I., Temam, R. Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

  16. Gill P.E., Saunders M.A., Shinnerl J.R. (1996) On the stability of cholesky factorization for quasi-definite systems. SIAM J. Matrix Anal. Appl. 17, 35–46

    Article  MATH  MathSciNet  Google Scholar 

  17. Golub G.H., Loan C.F.V. (1979) Unsymmetric positive definite linear systems. Linear Algebra Appl. 28, 85–98

    Article  MATH  MathSciNet  Google Scholar 

  18. Hager W.W. (1979) Convex control and dual approximations, part I. Control Cybern. 8, 5–22

    MathSciNet  Google Scholar 

  19. Hager, W.W. Inequalities and approximation. In: Coffman, C.V., Fix, G.J. (eds.) Constructive Approaches to Mathematical Models pp. 189–202. (1979)

  20. Hager, W.W. The dual active set algorithm. In: Pardalos, P.M. (ed.) Advances in Optimization and Parallel Computing pp. 137–142. North Holland, Amsterdam (1992)

  21. Hager W.W. (1998). The LP dual active set algorithm. In: Leone R.D., Murli A., Pardalos P.M., Toraldo G. (eds). High Performance Algorithms and Software in Nonlinear Optimization. Kluwer, Dordrecht, pp. 243–254

    Google Scholar 

  22. Hager W.W. (2000) Iterative methods for nearly singular linear systems. SIAM J. Sci. Comput. 22, 747–766

    Article  MATH  MathSciNet  Google Scholar 

  23. Hager W.W. (2002) The dual active set algorithm and its application to linear programming. Comput. Optim. Appl. 21, 263–275

    Article  MATH  MathSciNet  Google Scholar 

  24. Hager, W.W. The dual active set algorithm and the iterative solution of linear programs. In: Pardalos, P.M., Wolkowicz, H. (eds.) Novel Approaches to Hard Discrete Optimization, vol. 37, pp. 95–107 Fields Institute Communications, (2003)

  25. Hager W.W., Hearn D.W. (1993) Application of the dual active set algorithm to quadratic network optimization. Comput. Optim. Appl. 1, 349–373

    Article  MATH  MathSciNet  Google Scholar 

  26. Hager W.W., Ianculescu G. (1984) Dual approximations in optimal control. SIAM J. Control Optim. 22, 423–465

    Article  MATH  MathSciNet  Google Scholar 

  27. Hager, W.W., Shi, C.-L., Lundin, E.O. Active set strategies in the LP dual active set algorithm, tech. report. University of Florida, http://www.math.ufl.edu/~hager/LPDASA (1996)

  28. Karypis G., Kumar V. (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392

    Article  MathSciNet  Google Scholar 

  29. Karypis G., Kumar V. (1999) Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 96–129

    Article  Google Scholar 

  30. Karypis G., Kumar V. (1999) Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM Rev. 41, 278–300

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu J.W.H. (1991) A generalized envelope method for sparse factorization by rows. ACM Trans. Math. Softw. 17, 112–129

    Article  MATH  Google Scholar 

  32. Martinet B. (1970) Régularisation d’inéquations variationnelles par approximations successives. Rev. Francaise Inform. Rech. Oper. Ser. R-3 4, 154–158

    MathSciNet  Google Scholar 

  33. Martinet B. (1972) Determination approachée d’un point fixe d’une application pseudo-contractante. Comptes Rendus des Séances de l’Académie des Sciences 274, 163–165

    MATH  MathSciNet  Google Scholar 

  34. Ng E.G., Peyton B.W. (1993) Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14, 1034–1056

    Article  MATH  MathSciNet  Google Scholar 

  35. Pan P.Q. (2004) A dual projective pivot algorithm for linear programming. Comput. Optim. Appl. 29, 333–346

    Article  MATH  MathSciNet  Google Scholar 

  36. Rockafellar R.T. (1976) Monotone operators and the proximal point algorithm. SIAM J. Control 14, 877–898

    Article  MATH  MathSciNet  Google Scholar 

  37. Roos C., Terlaky T., Vial J.-P. (1997) Theory and Algorithms for Linear Optimization: An Interior Point Approach. Wiley, New York

    MATH  Google Scholar 

  38. Saunders M.A. (1996). Cholesky-based methods for sparse least squares: The benefits of regularization. In: Adams L., Nazareth J.L. (eds). Linear and Nonlinear Conjugate Gradient-Related Methods. SIAM, Philadelpha, pp. 92–100

    Google Scholar 

  39. Shih, C.L. Active Set Strategies in Optimization. PhD Thesis, University of Florida, Department of Mathematics (1995)

  40. Vanderbei R.J. (1995) Symmetric quasi-definite matrices. SIAM J. Optim. 5, 100–113

    Article  MATH  MathSciNet  Google Scholar 

  41. Volkwein S. (2003) Lagrange-SQP techniques for the control constrained optimal boundary control for Burger’s equation. Comput. Optim. Appl. 26, 253–284

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hager.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. 0203270.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T.A., Hager, W.W. A sparse proximal implementation of the LP dual active set algorithm. Math. Program. 112, 275–301 (2008). https://doi.org/10.1007/s10107-006-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0017-0

Keywords

Mathematics Subject Classification (2000)