Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Aggregation and discretization in multistage stochastic programming

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Multistage stochastic programs have applications in many areas and support policy makers in finding rational decisions that hedge against unforeseen negative events. In order to ensure computational tractability, continuous-state stochastic programs are usually discretized; and frequently, the curse of dimensionality dictates that decision stages must be aggregated. In this article we construct two discrete, stage-aggregated stochastic programs which provide upper and lower bounds on the optimal value of the original problem. The approximate problems involve finitely many decisions and constraints, thus principally allowing for numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash R. (1972) Real Analysis and Probability. Probability and Mathematical Statistics. Academic, Berlin Heidelberg Newyork

    Google Scholar 

  2. Birge J. (1984) Aggregation in stochastic production models. In: Proceedings of the 11th IFIP Conference on System Modelling and Optimization. Springer Berlin Heidelberg Newyork, New York

    Google Scholar 

  3. Birge J. (1985) Aggregation in stochastic linear programming. Math. Program. 31, 25–41

    Article  MATH  MathSciNet  Google Scholar 

  4. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer Berlin Heidelberg New York (1997)

  5. Birge J., Wets R.B. (1987) Computing bounds for stochastic programming problems by means of a generalized moment problem. Math. Oper. Res. 12, 149–162

    MATH  MathSciNet  Google Scholar 

  6. Casey M., Sen S. (2005) The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30(3): 615–631

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow Y., Teicher H. (1997) Probability Theory, 3rd edn. Springer Berlin Heidelberg, New York

    MATH  Google Scholar 

  8. Dantzig G., Infanger G. (1992) Large-scale stochastic linear programs–importance sampling and Benders decomposition. Comput. Appl. Math. I: 111–120

    MathSciNet  Google Scholar 

  9. Dawid A. (1980) Conditional independence for statistical operations. Ann. Stat. 8(3): 598–617

    Article  MATH  MathSciNet  Google Scholar 

  10. Dempster M., Thompson R. (1999) EVPI-based importance sampling solution procedures for multistage stochastic linear programmes on parallel MIMD architectures. Ann. Oper. Res. 90, 161–184

    Article  MATH  MathSciNet  Google Scholar 

  11. Dupačová J., Gröwe-Kuska N., Römisch W. (2003) Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. Ser. A 95, 493–511

    Article  MATH  Google Scholar 

  12. Edirisinghe N., Ziemba W. (1994) Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19, 314–340

    MathSciNet  Google Scholar 

  13. Edirisinghe N., Ziemba W. (1994) Bounds for two-stage stochastic programs with fixed recourse. Math. Oper. Res. 19, 292–313

    MATH  MathSciNet  Google Scholar 

  14. Ermoliev Y., Gaivoronski A. (1992) Stochastic quasigradient methods for optimization of discrete event systems. Ann. Oper. Res. 39, 1–39

    Article  MATH  MathSciNet  Google Scholar 

  15. Flåm S., Wets R.B. (1986) Finite horizon approximates of infinite horizon stochastic programs. Stochas. Optim. 81, 337–350

    Google Scholar 

  16. Flåm S., Wets R.B. (1987) Existence results and finite horizon approximates for infinite horizon optimization problems. Econometrica 55, 1187–1209

    Article  MATH  MathSciNet  Google Scholar 

  17. Frauendorfer K. (1988) Solving SLP recourse problems with arbitrary multivariate distributions  –  the dependent case. Math. Oper. Res. 13, 377–394

    MATH  MathSciNet  Google Scholar 

  18. Frauendorfer K. (1992) Stochastic two-stage programming, Lect. Notes Econ. Math. Syst., vol. 392 Springer, Berlin Heidelberg Newyork

    MATH  Google Scholar 

  19. Frauendorfer K. (1994) Multistage stochastic programming: Error analysis for the convex case. Z. Oper. Res. 39(1): 93–122

    MATH  MathSciNet  Google Scholar 

  20. Frauendorfer K. (1996) Barycentric scenario trees in convex multistage stochastic programming. Math. Program. 75(2): 277–294

    Article  MathSciNet  Google Scholar 

  21. Gassmann H., Ziemba W. (1986) A tight upper bound for the expectation of a convex function of a multivariate random variable. Math. Program. Study 27, 39–53

    MATH  MathSciNet  Google Scholar 

  22. Haarbrücker, G., Kuhn, D.: Valuation of electricity swing options by multistage stochastic programming. Working paper (2004)

  23. Heitsch H., Römisch W. (2003) Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206

    Article  MATH  MathSciNet  Google Scholar 

  24. Higle J., Sen S. (1991) Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650 fb–669

    Article  MathSciNet  Google Scholar 

  25. Høyland K., Wallace S. (2001) Generating scenario trees for multistage decision problems. Manage. Sci. 47(2): 295–307

    Article  Google Scholar 

  26. Infanger G. (1994) Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs. Boyd and Fraser, Danvers

    MATH  Google Scholar 

  27. Kall P. (1991) An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30, 267–276

    Article  MATH  MathSciNet  Google Scholar 

  28. Kall P., Wallace S. (1994) Stochastic Programming. Wiley, Chichester

    MATH  Google Scholar 

  29. Kaut, M., Wallace, S.: Evaluation of scenario-generation methods for stochastic programming. The Stochastic Programming E-Print Series (SPEPS) (2003)

  30. Korf, L.: An approximation framework for infinite horizon stochastic dynamic optimization problems with discounted cost. Research report, Department of Mathematics, Washington University, Seattle, USA (2000)

  31. Kuhn D. (2004) Generalized Bounds for Convex Multistage Stochastic Programs. Lect. Notes Econ. Math. Syst., vol. 548.Springer, Berlin Heidelberg Newyork

    Google Scholar 

  32. Madansky A. (1960) Inequalities for stochastic linear programming problems. Manage. Sci. 6, 197–204

    MATH  MathSciNet  Google Scholar 

  33. Meyn S., Tweedie R. (1996) Markov Chains and Stochastic Stability. Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Pearl J. (1991) Probabilistic Reasoning in Intelligent Systems, 2nd edn. Morgan Kaufman, San Mateo

    Google Scholar 

  35. Pflug G. (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program., Ser. B 89, 251–271

    Article  MATH  MathSciNet  Google Scholar 

  36. Prékopa A. (1995) Stochastic Programming. Kluwer, Dordrecht

    Google Scholar 

  37. Rachev S., Römisch W. (2002) Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27, 792–818

    Article  MATH  MathSciNet  Google Scholar 

  38. Rockafellar R., Wets R.B. (1978) The optimal recourse problem in discrete time: L 1-multipliers for equality constraints. SIAM J. Control Optim. 16, 16–36

    Article  MATH  MathSciNet  Google Scholar 

  39. Schervish, M.: Theory of Statistics. Springer Berlin Heidelberg New York (1995)

  40. Shapiro A. (2006) On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8

    Article  MATH  MathSciNet  Google Scholar 

  41. Shapiro A., Nemirovski A. (2005) On complexity of stochastic programming problems. In: Jeyakumar V., Rubinov A. (eds) Continuous Optimization: Current Trends and Applications, pp. 111–144. Springer Berlin Heidelberg Newyork

  42. Verma, T., Pearl, J.: Causal networks and expressiveness. In: Proceedings of the 4th Workshop on Uncertainty in Artificial Intelligence, pp. 352–359. Mountain View, CA (1988)

  43. Dupačová (as Žáčková) J. (1966) On minimax solutions of stochastic linear programming problems. časopis pro Pěstování Matematiky 91, 423–429

    Google Scholar 

  44. Wright S. (1994) Primal-dual aggregation and disaggregation for stochastic linear programs. Math. Oper. Res. 19(4): 893–908

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, D. Aggregation and discretization in multistage stochastic programming. Math. Program. 113, 61–94 (2008). https://doi.org/10.1007/s10107-006-0048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0048-6

Keywords

Mathematics Subject Classification (2000)