Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability under perturbations of some condition numbers in optimization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The behavior of condition numbers for free optimization problems under perturbations is considered in the infinite-dimensional setting. Semicontinuity properties via distance to ill-conditioning are obtained. Convergence theorems of the condition numbers are proved under variational convergence of the perturbed problems and suitable behavior of the gradients of the corresponding functionals. The particular case of convex quadratic forms is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch H. (1984) Variational convergence for functions and operators. Pitman, York shire

    MATH  Google Scholar 

  2. Bonnans J.F., Shapiro A. (2000) Perturbation analysis of optimization problems. Springer, Heidelberg

    MATH  Google Scholar 

  3. Cheung D., Cucker F. (2001) A new condition number for linear programming. Math. Program. 91: 163–174

    MathSciNet  MATH  Google Scholar 

  4. Cheung D., Cucker F., Peña J. (2003) Unifying condition numbers for linear programming. Math. Oper. Res. 28: 609–624

    Article  MathSciNet  MATH  Google Scholar 

  5. DeGiorgi E., Marino A., Tosques M. (1980) Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Naturali. 68: 180–187

    MathSciNet  Google Scholar 

  6. Dontchev A., Zolezzi T. (1993) Well-posed optimization problems. Lecture Notes in Math., vol. 1543. Springer, Berlin

  7. Mawhin, J.: Problémes de Dirichlet variationelles non linéaires. Presses de l’Univ. de Montréal, Montréal (1987)

  8. Orlandoni, R., Petrucci, O., Tosques, M.: A compactness theorem for curves of maximal slope for a class of nonsmooth and nonconvex functions. Nonsmooth optimization and related topics, edited by Clarke–Demyanov–Giannessi. Plenum, New York (1989)

  9. Peña J. (2001) Conditioning of convex programs from a primal-dual perspective. Math. Oper. Res. 26: 206–220

    Article  MathSciNet  MATH  Google Scholar 

  10. Poliquin R.A. Rockafellar R.T. (1998) Tilt stability of a local minimum. SIAM J. Optim. 8: 287–299

    Article  MathSciNet  MATH  Google Scholar 

  11. Renegar J. (1994) Some perturbation theory for linear programming. Math. Program. 65: 73–91

    Article  MathSciNet  Google Scholar 

  12. Renegar J. (1995) Linear programming, complexity theory and elementary functional analysis. Math. Program. 70: 279–351

    MathSciNet  Google Scholar 

  13. Renegar J. (1996) Condition numbers, the barrier method, and the conjugate-gradient method. SIAM J. Optim. 6: 879–912

    Article  MathSciNet  MATH  Google Scholar 

  14. Zolezzi T. (2002) On the distance theorem in quadratic optimization. J. Convex Anal. 9: 693–700

    MathSciNet  MATH  Google Scholar 

  15. Zolezzi T. (2003) Condition number theorems in optimization. SIAM J. Optim. 14: 507–516

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Zolezzi.

Additional information

Dedicated to A. Auslender for his 65th birthday.

Work partially supported by MURST.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolezzi, T. Stability under perturbations of some condition numbers in optimization. Math. Program. 116, 579–593 (2009). https://doi.org/10.1007/s10107-007-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0135-3

Keywords

Mathematics Subject Classification (2000)