Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok A.I. (1994). Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19: 769–779

    MATH  MathSciNet  Google Scholar 

  2. Barvinok, A.I., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics, Math. Sci. Res. Inst. Publ., vol. 38. Cambridge University Press, Cambridge, pp. 91–147 (1999)

  3. Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program. In: Pardalos [15]

  4. Cox D.A., Little J.B., O’Shea D. (1992). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin

    MATH  Google Scholar 

  5. de Klerk E., Laurent M., Parrilo P.A. (2006). A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoret. Comput. Sci. 361: 210–225

    Article  MATH  MathSciNet  Google Scholar 

  6. De Loera J.A., Haws D., Hemmecke R., Huggins P., Sturmfels B., Yoshida R. (2004). Short rational functions for toric algebra and applications. J. Symbolic Comput. 38(2): 959–973

    Article  MathSciNet  Google Scholar 

  7. De Loera J.A., Hemmecke R., Köppe M., Weismantel R. (2006). Integer polynomial optimization in fixed dimension. Math. Oper. Res. 31(1): 147–153

    Article  MATH  MathSciNet  Google Scholar 

  8. De Loera J.A., Hemmecke R., Tauzer J., Yoshida R. (2004). Effective lattice point counting in rational convex polytopes. J. Symbolic Comput. 38(4): 1273–1302

    Article  MathSciNet  Google Scholar 

  9. Garey M.R., Johnson D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco

    MATH  Google Scholar 

  10. Håstad, J.: Some optimal inapproximability results. Proceedings of the 29th Symposium on the Theory of Computing (STOC), ACM, pp. 1–10 (1997)

  11. Jones J.P. (1982). Universal diophantine equation. J. Symbolic Logic 47(3): 403–410

    MathSciNet  Google Scholar 

  12. Lenstra H.W. (1983). Integer programming with a fixed number of variables. Math. Oper. Res. 8: 538–548

    Article  MATH  MathSciNet  Google Scholar 

  13. Matiyasevich, Y.V.: Enumerable sets are diophantine. Doklady Akademii Nauk SSSR 191, 279–282 (1970), (Russian); English translation, Soviet Mathematics Doklady, vol. 11, pp. 354–357 (1970)

  14. Matiyasevich Y.V. (1993). Hilbert’s Tenth Problem. The MIT Press, Cambridge

    Google Scholar 

  15. Pardalos, P.M. (ed.): Complexity in numerical optimization. World Scientific, Singapore (1993)

  16. Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals, part I: introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symbolic Comput. 13(3): 255–300

    Article  MATH  MathSciNet  Google Scholar 

  17. Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals, part II: the general decision problem. Preliminaries for quantifier elimination. J. Symbolic Comput. 13(3): 301–328

    Article  MATH  MathSciNet  Google Scholar 

  18. Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals. part III: Quantifier elimination. J. Symbolic Comput. 13(3): 329–352

    Article  MATH  MathSciNet  Google Scholar 

  19. Renegar J. (1992). On the computational complexity of approximating solutions for real algebraic formulae. SIAM J. Comput. 21(6): 1008–1025

    Article  MATH  MathSciNet  Google Scholar 

  20. Vavasis, S.A.: Polynomial time weak approximation algorithms for quadratic programming. In: Pardalos [15]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Köppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Loera, J.A., Hemmecke, R., Köppe, M. et al. FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension. Math. Program. 115, 273–290 (2008). https://doi.org/10.1007/s10107-007-0175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0175-8

Keywords

Mathematics Subject Classification (2000)