Abstract
We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.
Similar content being viewed by others
References
Barvinok A.I. (1994). Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19: 769–779
Barvinok, A.I., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics, Math. Sci. Res. Inst. Publ., vol. 38. Cambridge University Press, Cambridge, pp. 91–147 (1999)
Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program. In: Pardalos [15]
Cox D.A., Little J.B., O’Shea D. (1992). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin
de Klerk E., Laurent M., Parrilo P.A. (2006). A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoret. Comput. Sci. 361: 210–225
De Loera J.A., Haws D., Hemmecke R., Huggins P., Sturmfels B., Yoshida R. (2004). Short rational functions for toric algebra and applications. J. Symbolic Comput. 38(2): 959–973
De Loera J.A., Hemmecke R., Köppe M., Weismantel R. (2006). Integer polynomial optimization in fixed dimension. Math. Oper. Res. 31(1): 147–153
De Loera J.A., Hemmecke R., Tauzer J., Yoshida R. (2004). Effective lattice point counting in rational convex polytopes. J. Symbolic Comput. 38(4): 1273–1302
Garey M.R., Johnson D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco
Håstad, J.: Some optimal inapproximability results. Proceedings of the 29th Symposium on the Theory of Computing (STOC), ACM, pp. 1–10 (1997)
Jones J.P. (1982). Universal diophantine equation. J. Symbolic Logic 47(3): 403–410
Lenstra H.W. (1983). Integer programming with a fixed number of variables. Math. Oper. Res. 8: 538–548
Matiyasevich, Y.V.: Enumerable sets are diophantine. Doklady Akademii Nauk SSSR 191, 279–282 (1970), (Russian); English translation, Soviet Mathematics Doklady, vol. 11, pp. 354–357 (1970)
Matiyasevich Y.V. (1993). Hilbert’s Tenth Problem. The MIT Press, Cambridge
Pardalos, P.M. (ed.): Complexity in numerical optimization. World Scientific, Singapore (1993)
Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals, part I: introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symbolic Comput. 13(3): 255–300
Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals, part II: the general decision problem. Preliminaries for quantifier elimination. J. Symbolic Comput. 13(3): 301–328
Renegar J. (1992). On the computational complexity and geometry of the first-order theory of the reals. part III: Quantifier elimination. J. Symbolic Comput. 13(3): 329–352
Renegar J. (1992). On the computational complexity of approximating solutions for real algebraic formulae. SIAM J. Comput. 21(6): 1008–1025
Vavasis, S.A.: Polynomial time weak approximation algorithms for quadratic programming. In: Pardalos [15]
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
De Loera, J.A., Hemmecke, R., Köppe, M. et al. FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension. Math. Program. 115, 273–290 (2008). https://doi.org/10.1007/s10107-007-0175-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-007-0175-8
Keywords
- Mixed-integer nonlinear programming
- Integer programming in fixed dimension
- Computational complexity
- Approximation algorithms
- FPTAS