Abstract
Many practical optimal control problems include discrete decisions. These may be either time-independent parameters or time-dependent control functions as gears or valves that can only take discrete values at any given time. While great progress has been achieved in the solution of optimization problems involving integer variables, in particular mixed-integer linear programs, as well as in continuous optimal control problems, the combination of the two is yet an open field of research. We consider the question of lower bounds that can be obtained by a relaxation of the integer requirements. For general nonlinear mixed-integer programs such lower bounds typically suffer from a huge integer gap. We convexify (with respect to binary controls) and relax the original problem and prove that the optimal solution of this continuous control problem yields the best lower bound for the nonlinear integer problem. Building on this theoretical result we present a novel algorithm to solve mixed-integer optimal control problems, with a focus on discrete-valued control functions. Our algorithm is based on the direct multiple shooting method, an adaptive refinement of the underlying control discretization grid and tailored heuristic integer methods. Its applicability is shown by a challenging application, the energy optimal control of a subway train with discrete gears and velocity limits.
Similar content being viewed by others
References
Alamir, M., Attia, S.A.: On solving optimal control problems for switched hybrid nonlinear systems by strong variations algorithms. In: 6th IFAC Symposium, NOLCOS, Stuttgart, Germany (2004)
Allgor R. and Barton P. (1999). Mixed-integer dynamic optimization. I-Problem formulation. Comput. Chem. Eng. 23(4): 567–584
Antsaklis, P., Koutsoukos, X.: On hybrid control of complex systems: a survey. In: 3rd International conference ADMP’98, automation of mixed processes: dynamic hybrid systems, pp. 1–8. Reims, France (1998)
Attia, S., Alamir, M., Canudas de Wit, C.: Sub optimal control of switched nonlinear systems under location and switching constraints. In: IFAC World Congress (2005)
Aumann R. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12: 1–12
Bansal V., Sakizlis V., Ross R., Perkins J. and Pistikopoulos E. (2003). New algorithms for mixed-integer dynamic optimization. Comput. Chem. Eng. 27: 647–668
Bär, V.: Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunktrandwertaufgaben mit Schalt und Sprungbedingungen mit Anwendungen in der optimalen Steuerung und der Parameteridentifizierung. Master’s Thesis, Universität Bonn (1984)
Barton P. and Lee C. (2002). Modeling, simulation, sensitivity analysis and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12(4): 256–289
Barton P. and Lee C. (2004). Design of process operations using hybrid dynamic optimization. Comput. Chem. Eng. 28(6–7): 955–969
Biegler L. (1984). Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8: 243–248
Binder T., Blank L., Bock H., Bulirsch R., Dahmen W., Diehl M., Kronseder T., Marquardt W., Schlöder J. and Stryk O. (2001). Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S., and Rambau, J. (eds) Online Optimization of Large Scale Systems: State of the Art, pp 295–340. Springer, Heidelberg
Bock, H., Eich, E., Schlöder, J.: Numerical solution of constrained least squares boundary value problems in differential-algebraic equations. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations. Teubner, Leipzig (1988)
Bock, H., Longman, R.: Computation of optimal controls on disjoint control sets for minimum energy subway operation. In: Proceedings of the American Astronomical Society. Symposium on Engineering Science and Mechanics. Taiwan (1982)
Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, NY, USA (1984)
Brandt-Pollmann, U.: Numerical solution of optimal control problems with implicitly defined discontinuities with applications in engineering. Ph.D. thesis, IWR, Universität Heidelberg (2004)
Burgschweiger, J., Gnädig, B., Steinbach, M.: Optimization models for operative planning in drinking water networks. Technical report, ZR-04-48, ZIB (2004)
Buss M., Glocker M., Hardt M., Stryk O.v., Bulirsch R. and Schmidt G. (2002). Nonlinear Hybrid Dynamical Systems: Modelling, Optimal Control, and Applications, vol. 279. Springer, Berlin
Chachuat B., Singer A. and Barton P. (2006). Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25): 8573–8392
Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR-Preprint 2001-25, Universität Heidelberg (2001)
Duran M. and Grossmann I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3): 307–339
Esposito W. and Floudas C. (2000). Deterministic global optimization in optimal control problems. J. Glob. Optim. 17: 97–126
Floudas C., Akrotirianakis I., Caratzoulas S., Meyer C. and Kallrath J. (2005). Global optimization in the 21st century: Advances and challenges. Comput. Chem. Eng. 29(6): 1185–1202
Fuller A. (1963). Study of an optimum nonlinear control system. J. Electron. Control 15: 63–71
Gallitzendörfer J., Bock H.: Parallel algorithms for optimization boundary value problems in DAE. In: Langendörfer H. (ed.) Praxisorientierte Parallelverarbeitung. Hanser, München (1994)
Gerdts M. (2006). A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3): 169–182
Grossmann I. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3: 227–252
Grossmann I., Aguirre P. and Barttfeld M. (2005). Optimal synthesis of complex distillation columns using rigorous models. Comput. Chem. Eng. 29: 1203–1215
Hermes H. and Lasalle J. (1969). Functional analysis and time optimal control, Mathematics in science and engineering, vol. 53. Academic, New York
Kawajiri, Y., Biegler, L.: Large-scale optimization strategies for zone configuration of simulated moving beds. In: 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 131–136. Elsevier, Amsterdam (2006)
Kaya C. and Noakes J. (1996). Computations and time-optimal controls. Optim. Control Appl. Methods 17: 171–185
Kaya C. and Noakes J. (2003). A computational method for time-optimal control. J. Optim. Theory Appl. 117: 69–92
Krämer-Eis P. (1985). Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften, vol. 166. Universität Bonn, Bonn
Laurent-Varin, J., Bonnans, F., Berend, N., Talbot, C., Haddou, M.: On the refinement of discretization for optimal control problems. IFAC Symposium on Automatic Control in Aerospace, St Petersburg (2004)
Lebiedz, D., Sager, S., Bock, H., Lebiedz, P.: Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods. Phys. Rev. Lett. 95, 108,303 (2005)
Lee C., Singer A. and Barton P. (2004). Global optimization of linear hybrid systems with explicit transitions. Syst. Control Lett. 51(5): 363–375
Lee H., Teo K., Jennings L. and Rehbock V. (1999). Control parametrization enhancing technique for optimal discrete-valued control problems. Automatica 35(8): 1401–1407
Leineweber D. (1999). Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf
Leineweber D., Bauer I., Bock H. and Schlöder J. (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Comput. Chem. Eng. 27: 157–166
Maurer H., Büskens C., Kim J. and Kaya Y. (2005). Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Methods Appl. 26: 129–156
Maurer H. and Osmolovskii N.P. (2004). Second order sufficient conditions for time-optimal bang–bang control. SIAM J. Control Optim. 42: 2239–2263
Mohideen M., Perkins J. and Pistikopoulos E. (1997). Towards an efficient numerical procedure for mixed integer optimal control. Comput. Chem. Eng. 21: S457–S462
Neustadt L. (1963). The existence of optimal controls in absence of convexity conditions. J. Math. Anal. Appl. 7: 110–117
Oldenburg J. (2005). Logic-based modeling and optimization of discrete-continuous dynamic systems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 830. VDI Verlag, Düsseldorf
Oldenburg J., Marquardt W., Heinz D. and Leineweber D. (2003). Mixed logic dynamic optimization applied to batch distillation process design. AIChE J. 49(11): 2900–2917
Papamichail I. and Adjiman C. (2004). Global optimization of dynamic systems. Comput. Chem. Eng. 28: 403–415
Plitt, K.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Master’s Thesis, Universität Bonn (1981)
Rehbock V. and Caccetta L. (2002). Two defence applications involving discrete valued optimal control. ANZIAM J. 44(E): E33–E54
Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg. ISBN 3-89959-416-9. Available at http://sager1.de/sebastian/downloads/Sager2005.pdf (2005)
Sager S., Bock H., Diehl M., Reinelt G. and Schlöder J. (2006). Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem. In: Seeger, A. (eds) Recent Advances in Optimization (Proceedings of the 12th French-German-Spanish Conference on Optimization), Lectures Notes in Economics and Mathematical Systems, vol. 563, pp 269–289. Springer, Heidelberg
Sager, S., Diehl, M., Singh, G., Küpper, A., Engell, S.: Determining SMB superstructures by mixed-integer control. In: Proceedings of OR2006. Karlsruhe (2007)
Sager, S., Kawajiri, Y., Biegler, L.: On the optimality of superstructures for simulated moving beds: Is one pump sufficient for each stream? AIChE J. (2007) (submitted)
Schäfer, A.: Efficient reduced Newton-type methods for solution of large-scale structured optimization problems with application to biological and chemical processes. Ph.D. thesis, Universität Heidelberg (2005)
Schlegel M. (2005). Adaptive discretization methods for the efficient solution of dynamic optimization problems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 829. VDI Verlag, Düsseldorf
Schlöder J. (1988). Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung, Bonner Mathematische Schriften, vol. 187. Universität Bonn, Bonn
Schulz V., Bock H. and Steinbach M. (1998). Exploiting invariants in the numerical solution of multipoint boundary value problems for DAEs. SIAM J. Sci. Comput. 19: 440–467
Schweiger C. and Floudas C. (1997). Interaction of design and control: Optimization with dynamic models. In: Hager, W. and Pardalos, P. (eds) Optimal Control: Theory, Algorithms and Applications, pp 388–435. Kluwer, Dordrecht
Shaikh M. (2004) Optimal control of hybrid systems: Theory and algorithms. Ph.D. Thesis, Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
Shaikh, M., Caines, P.: On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control (2006) (in press)
Srinivasan B., Palanki S. and Bonvin D. (2003). Dynamic Optimization of Batch Processes: I. Characterization of the nominal solution. Comput. Chem. Eng. 27: 1–26
Stryk, O., Glocker, M.: Decomposition of mixed-integer optimal control problems using branch and bound and sparse direct collocation. In: Proceedings of ADPM 2000. The 4th international conference on automatisation of mixed processes: hybrid dynamical systems, pp. 99–104 (2000)
Stursberg O., Panek S., Till J. and Engell S. (2002). Generation of optimal control policies for systems with switched hybrid dynamics. In: Engell, S., Frehse, G., and Schnieder, E. (eds) Modelling, Analysis and Design of Hybrid Systems, pp 337–352. Springer, Heidelberg
Sussmann, H.: A maximum principle for hybrid optimal control problems. In: Conference proceedings of the 38th IEEE conference on decision and control. Phoenix (1999)
Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC symposium in advances in automotive control, pp. 451–457. Salerno, Italy (2004)
Till J., Engell S., Panek S. and Stursberg O. (2004). Applied hybrid system optimization: An empirical investigation of complexity. Control Eng. 12: 1291–1303
Turkay M. and Grossmann I. (1996). Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20: 959–978
Zelikin M. and Borisov V. (1994). Theory of chattering control with applications to astronautics, robotics, economics and engineering. Birkhäuser, Basel
Zhang J., Johansson K., Lygeros J. and Sastry S. (2001). Zeno hybrid systems. Int. J. Robust Nonlinear Control 11: 435–451
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sager, S., Bock, H.G. & Reinelt, G. Direct methods with maximal lower bound for mixed-integer optimal control problems. Math. Program. 118, 109–149 (2009). https://doi.org/10.1007/s10107-007-0185-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-007-0185-6