Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An interactive weight space reduction procedure for nonlinear multiple objective mathematical programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To make a decision that is defined by multiple, conflicting objectives it is necessary to know the relative importance of the different objectives. In this paper we present an interactive method and the underlying theory for solving multiple objective mathematical programming problems defined by a convex feasible region and concave, continuously differentiable objective functions. The relative importance of the different objectives for a decision maker is elicited by using binary comparisons of objective function vectors. The method is cognitively easy to use and in test problems has rapidly converged to an optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, J., Carpentier, J.: Generalization of the wolfe reduced gradient method to the case of nonlinear constraints. In: Fletcher, R. (ed.) Optimization, pp. 37–47. AP, London (1969)

  2. Balinski M.: An algorithm for finding all vertices of convex polyhedral sets. SIAM J. Appl. Math. 9, 72–88 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belton V., Stewart T.: Multiple Criteria Decision Analysis. Springer, Berlin (2001)

    Google Scholar 

  4. Benayoun R., de Montgolfier J., Tergny J., Larichev O.: Linear programming with multiple objective functions: STEP method. Math. Program. 1, 366–375 (1971)

    Article  MATH  Google Scholar 

  5. Chankong V., Haimes Y.: An interactive surrogate worth tradeoff (ISWT) Method for multiobjective decision making. In: Zionts, S. (eds) Multiple criteria problem solving, Springer, Berlin (1978)

    Google Scholar 

  6. Deb K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  7. Eschenauer, H., Koski, J., Osyczka, A. (eds.): Multicriteria Design Optimization. Procedures and Applications. Springer, Berlin (1990)

    MATH  Google Scholar 

  8. Fylstra D., Lasdon L., Watson J., Warren A.: Design and use of the Microsoft Excel solver. Computers/Comput. Sci. Softw. Interfaces 28, 29–55 (1998)

    Google Scholar 

  9. Gardiner L.R., Steuer R.E.: Unified interactive multiple objective programming. EJOR 74, 391–406 (1994)

    Article  MATH  Google Scholar 

  10. Geoffrion A.M., Dyer J.S., Feinberg A.: An interactive approach for multicriterion optimization, with an application to the operation of an academic department. Manage. Sci. 19, 357–368 (1972)

    Article  MATH  Google Scholar 

  11. Keefer D.L., Kirkwood C.W., Corner J.L.: Perspective on decision analysis applications, 1990–2001. Decis. Anal. 1, 4–22 (2004)

    Article  Google Scholar 

  12. Kirkwood C.W., Sarin R.K.: Preference conditions for multiattribute value functions. Oper. Res. 28, 225–232 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Köksalan M., Sagala P.N.S.: Interactive approaches for discrete alternative multiple criteria decision making with monotone utility functions. Manage. Sci. 41, 1158–1171 (1995)

    Article  MATH  Google Scholar 

  14. Korhonen P., Laakso J.: A visual interactive method for solving the multiple criteria problem. EJOR 24, 277–287 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lotov, A., Bushenkov, V., Kamenev, G.: Interactive decision maps: approximation and visualization of pareto frontier, series: applied optimization, vol. 89 (2004)

  16. Manas M., Nedoma J.: Finding all vertices of a convex polyhedron. Numer. Math. 12, 226–229 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miettinen K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (2004)

    Google Scholar 

  18. Musselman K., Talavage J.: A tradeoff cut approach to multiple objective optimization. Oper. Res. 28, 1424–1435 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roy A., Wallenius J.: Nonlinear and unconstrained multiple-objective optimization: algorithm, computation and application. Naval Res. Logist. 38, 623–635 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roy A., Wallenius J.: Nonlinear multiple objective optimization: an algorithm and some theory. Math. Program. 55, 235–249 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shin W.S., Ravindran A.: Interactive multiple objective optimization, survey I—continuous case. Comput. Oper. Res. 18, 97–114 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Slowinski, R.: Outranking-based interactive procedure for multiple objective programs. In: Roy, B. (ed.) Cahiers et Documents, LAMSADE group, vol. 24 (1990)

  23. Steuer R.: An interactive multiple objective linear programming procedure. TIMS Stud. Manage. Sci. 6, 225–239 (1977)

    Google Scholar 

  24. Steuer R., Choo E.-U.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wallenius, H.: Implementing interactive multiple criteria decision methods in public policy. Jyväskylä studies in computer science, economics and statistics, vol. 18, Univ. of Jyväskylä (1991)

  26. Wallenius J., Dyer J., Fishburn P., Steuer S., Zionts S., Deb K.: Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Manage. Sci. 54, 1336–1349 (2008)

    Article  Google Scholar 

  27. Wierzbicki A.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds) MCDM, theory and application, Springer, Berlin (1980)

    Google Scholar 

  28. Zionts S., Wallenius J.: An interactive programming method for solving the multiple criteria problem. Manage. Sci. 22, 652–663 (1976)

    Article  MATH  Google Scholar 

  29. Zionts S., Wallenius J.: An interactive MOLP method for a class of underlying nonlinear utility functions. Manage. Sci. 29, 519–529 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki Wallenius.

Additional information

This study was initiated while the third author was on sabbatical in the Industrial Engineering Department at Arizona State University. He appreciates the hospitality of the Industrial Engineering Department. Wallenius would also like to acknowledge the financial support of the Academy of Finland (grants no. 212767 and 200935) and the Foundation for Economic Education, Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackin, P.D., Roy, A. & Wallenius, J. An interactive weight space reduction procedure for nonlinear multiple objective mathematical programming. Math. Program. 127, 425–444 (2011). https://doi.org/10.1007/s10107-009-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0293-6

Keywords

Mathematics Subject Classification (2000)