Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Primal and dual linear decision rules in stochastic and robust optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the space of decision rules to those that exhibit a linear data dependence. In this paper, we propose an efficient method to estimate the approximation error introduced by this rather drastic means of complexity reduction: we apply the linear decision rule restriction not only to the primal but also to a dual version of the stochastic program. By employing techniques that are commonly used in modern robust optimization, we show that both arising approximate problems are equivalent to tractable linear or semidefinite programs of moderate sizes. The gap between their optimal values estimates the loss of optimality incurred by the linear decision rule approximation. Our method remains applicable if the stochastic program has random recourse and multiple decision stages. It also extends to cases involving ambiguous probability distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang, M., Chou, M., Sim, M., So, K.: A robust optimization framework for analyzing distribution systems with transshipments. Working paper. National University of Singapore, Singapore (2008)

  2. Ben-Tal A., Boyd S., Nemirovski A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107(1–2 Ser. B), 63–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Tal A., Golany B., Nemirovski A., Vial J.: Supplier-retailer flexible commitments contracts: a robust optimization approach. Manuf. Serv. Oper. Manag. 73, 248–273 (2005)

    Article  Google Scholar 

  4. Ben-Tal A., Goryashko A., Guslitzer E., Nemirovski A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2, Ser. A), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal A., Nemirovski A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal A., Nemirovski A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Tal A., Nemirovski A., Roos C.: Robust solutions of uncertain quadratic and conic quadratic problems. SIAM J. Optim. 13(2), 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsekas D.: Dynamic Programming and Optimal Control, Volumes I and II. Athena Scientific, Belmont, MA (2001)

    Google Scholar 

  9. Bertsimas D., Sim M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Billingsley P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  11. Boyd S., El Ghaoui L., Feron E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory, vol. 15 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Google Scholar 

  12. Calafiore G.: Multi-period portfolio optimization with linear control policies. Automatica 44(10), 2463–2473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Sim M., Sun P.: A robust optimization perspective on stochastic programming. Oper. Res. 55(6), 1058–1071 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen X., Sim M., Sun P., Zhang J.: A linear decision-based approximation approach to stochastic programming. Oper. Res. 56(2), 344–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. (2009), opre.1080.0605

  16. Dyer M., Stougie L.: Computational complexity of stochastic programming problems. Math. Program. A 106(3), 423–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. El Ghaoui L., Oustry F., Lebret H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garstka S.J., Wets R.J.-B.: On decision rules in stochastic programming. Math. Program. 7, 117–143 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein Haneveld W.: Duality in Stochastic linear and dynamic programming, vol. 274 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1985)

    Google Scholar 

  20. Kuhn D.: An information-based approximation scheme for stochastic optimization problems in continuous time. Math. Oper. Res. 34(2), 428–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ordóñez F., Zhao J.: Robust capacity expansion of network flows. Networks 50(2), 136–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar R., Uryasev S.: Optimization of conditional value-at-risk. J. Risk 2(3), 21–41 (2000)

    Google Scholar 

  23. Rockafellar R., Wets R.-B.: Variational Analysis, vol. 317 of A Series of Comprehensive Studies in Mathematics. Springer-Verlag, New York (1998)

    Google Scholar 

  24. Shapiro, A.: On duality theory of conic linear problems. In Semi-Infinite Programming. Kluwer Academic Publishers, pp. 135–165 (2001)

  25. Shapiro A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58(1), 57–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shapiro A., Nemirovski A.: On complexity of stochastic programming problems. In: Jeyakumar, V., Rubinov, A. (eds) Continuous Optimization: Current Trends and Applications, pp. 111–144. Springer, Berlin (2005)

    Google Scholar 

  27. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wright S.: Primal-dual aggregation and disaggregation for stochastic linear programs. Math. Oper. Res. 19(4), 893–908 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ye Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, D., Wiesemann, W. & Georghiou, A. Primal and dual linear decision rules in stochastic and robust optimization. Math. Program. 130, 177–209 (2011). https://doi.org/10.1007/s10107-009-0331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0331-4

Keywords

Mathematics Subject Classification (2000)