Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Subsmooth semi-infinite and infinite optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We first consider subsmoothness for a function family and provide formulas of the subdifferential of the pointwise supremum of a family of subsmooth functions. Next, we consider subsmooth infinite and semi-infinite optimization problems. In particular, we provide several dual and primal characterizations for a point to be a sharp minimum or a weak sharp minimum for such optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander A., Goberna M., López M.A.: Penalty and smoothning methods for convex semi-infinite programming. Math. Oper. Res. 34, 303–319 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aussel D., Daniilidis A., Thibault L.: Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357, 1275–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brosowski B.: Parametric Semi-Infinite Optimization. Verlag Peter Lang, Frankfurt (1982)

    MATH  Google Scholar 

  4. Burke J.V., Deng S.: Weak sharp minima revisited. Part I: basic theory. Control Cybern. 31, 439–469 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Burke J.V., Ferris M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  7. Clarke F.H., Stern R., Wolenski P.: Proximal smoothness and the lower-C2 property. J. Convex Anal. 2, 117–144 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Clarke F.H., Ledyaev Y., Stern R., Wolenski P.: Nonsmmoth Analysis and Control Theory. Springer, New York (1998)

    Google Scholar 

  9. Cromme L.: Strong uniqueness, a far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29, 179–193 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferris, M.C.: Weak Sharp Minima and Penalty Fucntions in Mathematical Programming. Ph.D. Thesis, University of Cambridge, Cambridge (1988)

  11. Goberna A., López M.A.: Linear Semi-Infinite Optimization. Wiley, Chichster (1998)

    MATH  Google Scholar 

  12. Goberna, A., López, M.A. (eds): Semi-Infinite Programming—Recent Advances. Kluwer, Boston (2001)

    MATH  Google Scholar 

  13. Hantoute A., López M.A., Zalinescu C.: Subdifferential calculus rules in convex analysis: a unifying approach via pointwise supremum functions. SIAM J. Optim. 19, 863–882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion R., Outrata J.: Calmness of constraint systems with applications. Math. Program. 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hettich R., Kortanek K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jittorntrum K., Osborne M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34, 439–455 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jongen H.T., Ruuckmann J.-J., Stein O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83, 145–158 (1998)

    MATH  Google Scholar 

  18. Klatte D., Henrion R.: Regularity and stability in nonlinear semi-infinite optimization. Semi Infin Program Nonconvex Optim. Appl. 25, 69–102 (1998)

    MathSciNet  Google Scholar 

  19. Lewis, A., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.-P., Martinez-Legaz, J.-E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, Proceedings of the 5th Symposium on Generalized Convexity, Luminy, 1996, pp. 75-0110. Kluwer, Dordrecht (1997)

  20. López M.A., Vercher E.: Optimality conditions for nondifferentiable convex semi-infinite programming. Math. Program. 27, 307–319 (1983)

    Article  MATH  Google Scholar 

  21. López M.A., Volle M.: A formula for the set of optimal solutions of a relaxed minimization problem, applications to subdifferential calculus. J. Convx Anal. 17, 1057–1075 (2010)

    MATH  Google Scholar 

  22. Mordukhovich B.S.: Variational Analysis and Generalized Differentiation, vol. I/II, Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  23. Nurnberger G.: Global unicity in semi-infinite optimization. Numer. Funct. Anal. Optim. 8, 173–191 (1985)

    Article  MathSciNet  Google Scholar 

  24. Osborne M.R., Womersley R.S.: Strong uniqueness in sequential linear programming. J. Austral. Math. Soc. Ser. B 31, 379–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pang J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MATH  Google Scholar 

  26. Polak E.: Optimization. Springer, New York (1997)

    Book  MATH  Google Scholar 

  27. Poliquin R., Rockafellar R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reemtsen, R., Ruckmann, J.-J. (eds): Semi-Infinite Programming. Kluwer, Boston (1998)

    MATH  Google Scholar 

  29. Rockafellar R.T., Wets R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Stein O.: Bi-Level Strategies in Semi-Infinite Programming. Kluwer, Boston (2003)

    MATH  Google Scholar 

  31. Studniarski M., Ward D.E.: Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38, 219–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tapia R.A., Trosset M.W.: An extension of the Karush–Kuhn–Tucker necessity conditions to infinite programming. SIAM Rev. 36, 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vazquez F.G., Ruckmann J.J.: Extensions of the Kuhn–Tucker constraint qualification to generalized semi-infinite programming. SIAM J. Optim. 15, 926–937 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zalinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces. In: Proceedings of 12th Baikal International Conference on Optimization Methods and Their Applications, Irkutsk, pp. 272–284 (2001)

  35. Zalinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  36. Zheng X.Y., Ng K.F.: Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14, 757–772 (2003)

    Article  MathSciNet  Google Scholar 

  37. Zheng X.Y., Ng K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19, 62–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng X.Y., Yang X.Q.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng X.Y., Yang X.Q.: Weak sharp minima for semi-infinite optimization problems with applications. SIAM J. Optim. 18, 573–588 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng X.Y., Yang X.Q.: Global weak sharp minima for convex (semi-)infinite optimization problems. J. Math. Anal. Appl. 248, 1021–1028 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Yin Zheng.

Additional information

This research was supported by an Earmarked Grant (GRF) from the Research Grant Council of Hong Kong and the National Natural Science Foundation of P. R. China (Grant No. 11061038).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X.Y., Ng, K.F. Subsmooth semi-infinite and infinite optimization problems. Math. Program. 134, 365–393 (2012). https://doi.org/10.1007/s10107-011-0440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0440-8

Keywords

Mathematics Subject Classification (2000)