Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Relaxations for two-level multi-item lot-sizing problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider several variants of the two-level lot-sizing problem with one item at the upper level facing dependent demand, and multiple items or clients at the lower level, facing independent demands. We first show that under a natural cost assumption, it is sufficient to optimize over a stock-dominant relaxation. We further study the polyhedral structure of a strong relaxation of this problem involving only initial inventory variables and setup variables. We consider several variants: uncapacitated at both levels with or without start-up costs, uncapacitated at the upper level and constant capacity at the lower level, constant capacity at both levels. We finally demonstrate how the strong formulations described improve our ability to solve instances with up to several dozens of periods and a few hundred products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afentakis, P., Gavish, B.: Optimal lot-sizing algorithms for complex product structures. Oper. Res. 34, 237–249 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aggarwal, A., Park, J.: Improved algorithms for economic lot-size problems. Oper. Res. 41, 549–571 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated multi-echelon production planning problems. Oper. Res. Lett. 8, 61–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balas, E.: On the convex hull of the union of certain polyhedra. Oper. Res. Lett. 7(6), 279–283 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barany, I., Edmonds, J., Wolsey, L.A.: Packing and covering a tree by subtrees. Combinatorica 6, 245–257 (1986)

    Article  MathSciNet  Google Scholar 

  6. Barany, I., Van Roy, T.J., Wolsey, L.A.: Uncapacitated lot sizing: the convex hull of solutions. Math. Program. 22, 32–43 (1984)

    MATH  Google Scholar 

  7. Bitran, G.R., Yanasse, H.H.: Computational complexity of the capacitated lot size problem. Manag. Sci. 28, 1174–1186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clark, A.J., Scarf, H.: Optimal policies for multi-echelon inventory problems. Manag. Sci. 6, 475–490 (1960)

    Article  Google Scholar 

  9. Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.A.: Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Federgrün, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot-size models with \(n\) periods in \(O(n\, log\, n)\) or \(O(n)\) time. Manag. Sci. 37, 909–925 (1991)

    Article  MATH  Google Scholar 

  11. Ghouila-Houri, A.: Caracterisation des matrices totalement unimodulaires. C.R. Acad. Sci. Paris 254, 1192–1194 (1962)

    MATH  MathSciNet  Google Scholar 

  12. Günlük, O., Pochet, Y.: Mixing mixed integer inequalities. Math. Program. 90, 429–457 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hwang, H.-C.: Economic lot-sizing for integrated production and transportation. Oper. Res. 58(2), 428–444 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krarup, J., Bilde, O.: Plant location, set covering and economic lot sizes: an \({O}(mn)\) algorithm for structured problems. In: Collatz, L., et al., (eds.) Optimierung bei Graphentheoretischen und Ganzzahligen Probleme, pp. 155–180. Birkhauser Verlag, Basel (1977)

  15. Küçükyavuz, S., Pochet, Y.: Uncapacitated lot-sizing with backlogging: the convex hull. Math. Program. 118, 151–175 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lovasz, L.: Graph theory and integer programming. Ann. Discret. Math. 4, 141–158 (1079)

    Article  MathSciNet  Google Scholar 

  17. Melo, R., Wolsey, L.A.: Uncapacitated two-level lot-sizing. Oper. Res. Lett. 38, 241–245 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pochet, Y., Wolsey, L.A.: Lot-size models with backlogging: strong formulations and cutting planes. Math. Program. 40, 317–335 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pochet, Y., Wolsey, L.A.: Solving multi-item lot-sizing problems using strong cutting planes. Manag. Sci. 37(1), 53–67 (1991)

    Article  MATH  Google Scholar 

  20. Pochet, Y., Wolsey, L.A.: Lot-sizing with constant batches: formulation and valid inequalities. Math. Oper. Res. 18, 767–785 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pochet, Y., Wolsey, L.A.: Polyhedra for lot-sizing with Wagner-Whitin costs. Math. Program. 67, 297–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Pochet, Y., Wolsey, L.A.: Single item lot-sizing with non-decreasing capacities. Math. Program. 121, 123–143 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rardin, R.L., Choe, U.: Tighter relaxations of fixed charge network flow problems. Technical Report report J-79-18, School of Industrial and Systems Engineering, Georgia Institute of Technology (1979)

  25. van Hoesel, C.P.M., Romijn, H.E., Romero Morales, D., Wagelmans, A.: Integrated lot-sizing in serial supply chains with production capacities. Manag. Sci. 51, 1706–1719 (2005)

    Article  MATH  Google Scholar 

  26. van Hoesel, C.P.M., Wagelmans, A., Moerman, B.: Using geometric techniques to improve dynamic programming algorithms for the economic lot-sizing problem and extensions. Eur. J. Oper. Res. 75, 312–331 (1994)

    Article  MATH  Google Scholar 

  27. van Hoesel, C.P.M., Wagelmans, A., Wolsey, L.A.: Polyhedral characterization of the economic lot-sizing problem with start-up costs. SIAM J. Discret. Math. 7, 141–151 (1994)

    Article  MATH  Google Scholar 

  28. Van Vyve, M., Wolsey, L.A.: Approximate extended formulations. Math. Program. B 105, 501–522 (2006)

    Article  MATH  Google Scholar 

  29. Veinott, A.F.: Minimum concave cost solution of Leontief substitution systems of multifacility inventory systems. Oper. Res. 17, 262–291 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  30. Verweij, B., Wolsey, L.A.: Uncapacitated lot-sizing with buying, sales and backlogging. Optim. Methods Softw. 19, 427–436 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5, 89–96 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zangwill, W.I.: A backlogging model and a multi-echelon model of a dynamic economic lot size production system: a network approach. Manag. Sci. 15, 506–526 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, M., Küçükyavuz, S., Yaman, H.: A polyhedral study of multi-echelon lot sizing with intermediate demands. Oper. Res. 60, 918–936 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Van Vyve.

Additional information

This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the authors. The research of the third author is supported by TUBITAK.

Appendix: Proof of Theorem 3

Appendix: Proof of Theorem 3

Similar to Theorem 1, the proof is in three steps. In the first step, we show that the polyhedron \(SCC\) defined by (49)–(55) is integral for \(m=1\). Then we extend the result to \(m>1\) and finally prove that adding constraints (48) does not destroy integrality.

Let \(SSC_I\) denote the set of integral solutions in \(SSC\) and consider the case \(m=1\). As we did in the proof of Theorem 2, for a given non-zero objective function \(\min \sum _{u=1}^n g^0_u \zeta _u +\sum _{u=1}^n g^1_u \delta _u + \sum _{i=0}^1 \sum _{u=0}^n q^i_u y^i_u+ \sum _{i=0}^1 \sum _{u=1}^n \bar{q}^i_u z^i_u\) with bounded optimal value, we determine one inequality among (49)–(55) that is satisfied at equality by all optimal solutions.

We use the following observation. Let \(\alpha _1 \in [0,n+1]\), \(\alpha _2\in [\alpha _1, n+1]\), \(\beta _2 \in [\alpha _1, n+1]\), \(\beta _1 \in [0,\beta _2]\) with \(\beta _1=n+1\) if \(\beta _2=n+1\), \(\gamma _2 \in [1,\alpha _1-1] \cup \{\beta _2\}\), \(\gamma _1 \in [0,\gamma _2]\) if \(\gamma _2\le \alpha _1-1\) and \(\gamma _1=\beta _1\) if \(\gamma _2=\beta _2\). The \(y\) and \(z\) vectors in the extreme points of \(conv(SSC_I)\) are of the following form: \(y^0_u=1\) for \(u\in [\alpha _1, \alpha _2]\), \(z^0_{\alpha _1}=1\), \(y^1_u=1\) for \(u\in [\gamma _1, \gamma _2]\cup [\beta _1,\beta _2]\), \(z^1_{\gamma _1}=z^1_{\beta _1}=1\), the other entries of \(y\) and \(z\) vectors are zero. In the sequel, we use the values \(\alpha _1, \alpha _2,\gamma _1,\gamma _2,\beta _1,\beta _2\) to represent the corresponding extreme points.

  1. a.

    Let \(\bar{q}^0_0=\bar{q}^1_0=0\). We need \(g^0, g^1\ge 0\), \(\bar{q}^0_t + \sum _{u=t}^{t+k} q^0_u \ge 0\) and \(\bar{q}^1_t + \sum _{u=t}^{t+k} q^1_u \ge 0\) for all \(t\in [0,n]\), \(k\in [0, n-t]\) for the problem to be bounded.

  2. b.

    For \(i=0,1\), if there exists \(u\in [1,n]\) with \(q^i_u<0\), then \(y^i_u=z^i_u + y^i_{u-1}\).

  3. c.

    For \(i=0,1\), if there exists \(u\in [1,n]\) with \(\bar{q}^i_u<0\), then \(z^i_u=y^i_u\).

  4. d.

    For \(i=0,1\), if \(q^i_0<\bar{q}^i_1\), then \(z^i_1=0\). If \(q^i_0 > \bar{q}^i_1\), then \(y^i_0=0\). So \(q^i_0=\bar{q}^i_1\). In the remaining, we study the case where \(g^0, g^1,q^0, q^1, \bar{q}^0, \bar{q}^1\ge 0\).

  5. e.

    If \(g^0=q^0=\bar{q}^0=0\), then the problem is single-level and the result is known to hold [21].

  6. f.

    Suppose that \(g^0=0\). If \(q^0_0>0\), then \(y^0_0=0\). If there exists \(u\in [1,n]\) with \(q^0_u+\bar{q}^0_u>0\), then \(z^0_u=0\). In the remaining, we assume that there exists \(l\) such that \(g^0_l>0\). Let \(l\) be the highest such index.

  7. g.

    If \(q^0_u+\bar{q}^0_u < q^0_{u+1}+\bar{q}^0_{u+1}\) for some \(u\in [1,n-1]\), then \(z^0_{u+1}=0\). Let \(t\in [1,n]\) be the largest index with \(q^0_t+\bar{q}^0_t > 0\). If no such \(t\) exists, then let \(t=0\). If \(t>l\), then \(z^0_t=0\). So we assume that \(t\le l\).

  8. h.

    If there exist \(k \in [1,l]\), \(m_1\in [0,k]\) and \(m_2\in [k, n]\) such that \(\bar{q}^0_k+q^0_k+\bar{q}^1_{m_1} +\sum _{u=m_1}^{m_2} q^1_u < g^0_l\), then \( \zeta _l=0\). Therefore, as \(\bar{q}^0_k+q^0_k=0\) for \(k>t\), we assume that \(\bar{q}^1_{m_1} +\sum _{u=m_1}^{m_2} q^1_u \ge g^0_l>0\) for all \(m_2\in [t+1,n]\) and \(m_1\in [0,m_2]\).

  9. i.

    If \(q^1_{t+1}>0\), we show that with \(t,l\) chosen in this way, the inequality (49) if \(t=0\), (50) if \(t\in [1,l-1]\) or (51) if \(t=l\) is satisfied at equality by all optimal solutions. Note that the cost assumptions imply that all rays with non-zero contribution in this inequality have positive cost. Let \(( \zeta , \delta , y^0,y^1,z^0,z^1)\) be an extreme point optimal solution. Suppose that the inequality (49), (50), or (51) corresponding to the above choice of \(t\) and \(l\) is not tight.

    1. (a)

      Case \( \zeta _l=1\). If \(y^1_{t+1}+\sum _{u=t+2}^{l}z^1_u \ge 1\), then \(t+1\le \beta _2\) and \(\sum _{u=1}^t y^0_u=0\). In this case, setting \(\alpha _1, \alpha _2 \leftarrow t+1\) and \( \zeta _l=0\) decreases the cost by \(g^0_l>0\). If \(y^1_{t+1}+\sum _{u=t+2}^{l}z^1_u =0\), then \(y^0_{1}+\sum _{u=2}^{t}z^0_u =1\) and \(\beta _1>l\). Now, setting \(\alpha _1, \alpha _2 \leftarrow t+1\) yields a better solution since \(q^0_u+\bar{q}^0_u>0\) for all \(u\in [1,t]\) and \(q^0_0=\bar{q}^0_1\).

    2. (b)

      Case \( \zeta _l=0\). If \(y^0_{1}+\sum _{u=2}^{t}z^0_u =0 \), then \(y^1_{t+1} +\sum _{u=t+2}^l z^1_u \ge 2\). Hence \(t+1\le \gamma _2\) and \(\beta _1\ge t+2\). Now setting \(\alpha _1,\alpha _2 \leftarrow \gamma _2\), \(\beta _1 \leftarrow \gamma _1\) and \(\beta _2 \leftarrow \gamma _2\) decreases the cost by \(\bar{q}_{\beta _1}+\sum _{u=\beta _1}^{\beta _2}q^1_u\), which is positive since \(\beta _1\in [t+2,l]\). If \(y^0_{1}+\sum _{u=2}^{t}z^0_u =1\), then \(y^1_{t+1} +\sum _{u=t+2}^l z^1_u \ge 1\). If \(\beta _1\ge t+1\), then setting \(\alpha _1, \alpha _2 \leftarrow t+1\) gives a better solution. If \(\beta _1\le t\), then \(y^1_{t+1}=1\) and \(\sum _{u=t+1}^{\beta _2} q^1_u >0\), so it is better to set \(\beta _2 \leftarrow t\).

  10. j.

    If \(g^0_t>0\) (and \(q^1_{t+1}=0\), but this is not necessary here), then inequality \( \zeta _t\ge 1 - y^0_1-\sum _{u=2}^t z^0_u \) (i.e., of type (51)) is satisfied at equality. Indeed, if not, then \( \zeta _t=1\), \(y^0_1+\sum _{u=2}^t z^0_u =1\), and \(\beta _1\ge t+1\). Then setting \(\alpha _1, \alpha _2 \leftarrow t+1\) gives a better solution.

  11. k.

    If \(q^1_{t+1}=0\) and \(g^0_t=0\), then \(z^0_t=0\), or equivalently \(\alpha _1 \ne t\), in any optimal solution. Indeed, if \(\alpha _1=t\) and \(\beta _2>t\), then setting \(\alpha _1, \alpha _2 \leftarrow t+1\) gives a better solution. If \(\alpha _1=t\) and \(\beta _2=t\), then setting \(y^1_{t+1}=1\) at zero cost (and therefore \(\beta _2=t+1\)) and \(\alpha _1, \alpha _2 \leftarrow t+1\) gives a better solution.

Thus we can conclude that all optimal solutions lie on a face defined by one of the inequalities (49)–(55). This proves that \(SSC\) is integral when \(m=1\).

To prove that the result is true for \(m>1\), we need a variant of Proposition 3. First, we observe that in an extreme point of \(conv(SSC_I)\), we have \(y^0_0+\sum _{j=1}^n z^0_j \le 1\) and that given any \(( \zeta , \delta , y^0,y^1,z^0,z^1)\in SSC\), the solution \(( \zeta , \delta , \bar{y}^0,y^1,\bar{z}^0,z^1)\) is also in \(SSC\) where \(\bar{y}^0_0 =\min \{y^0_0, 1\}\), \(\bar{y}^0_1=\min \{z^0_1+y^0_0,1\}\), \(\bar{z}^0_j =\min \{(1-y^0_0-z^0_{1j-1})^+, z^0_j\}\) for \(j=1, \ldots ,n\), and \(\bar{y}^0_j=\bar{z}^0_j\) for \(j=2, \ldots ,n\). Now, we can use similar arguments to those of Proposition 3 to obtain the result.

Finally we need to show that adding constraints (48) does not destroy integrality. As in the proof of Theorem 1, the key argument is that when such an inequality is tight, constraint (52) is dominated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Vyve, M., Wolsey, L.A. & Yaman, H. Relaxations for two-level multi-item lot-sizing problems. Math. Program. 146, 495–523 (2014). https://doi.org/10.1007/s10107-013-0702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0702-8

Keywords

Mathematics Subject Classification (2000)