Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Higher-order reverse automatic differentiation with emphasis on the third-order

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

It is commonly assumed that calculating third order information is too expensive for most applications. But we show that the directional derivative of the Hessian (\(D^3 f(x)\cdot d\)) can be calculated at a cost proportional to that of a state-of-the-art method for calculating the Hessian matrix. We do this by first presenting a simple procedure for designing high order reverse methods and applying it to deduce several methods including a reverse method that calculates \(D^3f(x)\cdot d\). We have implemented this method taking into account symmetry and sparsity, and successfully calculated this derivative for functions with a million variables. These results indicate that the use of third order information in a general nonlinear solver, such as Halley–Chebyshev methods, could be a practical alternative to Newton’s method. Furthermore, high-order sensitivity information is used in methods for robust aerodynamic design. An efficient high-order differentiation tool could facilitate the use of similar methods in the design of other mechanical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Specifically \(P^T\) would be \(\Psi ^1\) and \(\Phi ^{i}\) would be \(\Psi ^{i+1}\).

  2. As checked May 28th, 2013.

  3. The bandwidth of matrix \(M=(m_{ij})\) is the maximum value of \(2|i-j|+1\) such that \(m_{ij}\ne 0\).

  4. On the function scon1dls, both methods generate different fill-ins that are five orders of magnitude smaller than the remaining entries.

References

  1. Griewank, A., Walther, A.: Evaluating derivatives, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Book  MATH  Google Scholar 

  2. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Griewank, A., Naumann, U.: Accumulating Jacobians as chained sparse matrix products. Math. Progr. 95(3), 555–571 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gower, R.M., Mello, M.P.: A new framework for the computation of Hessians. Optim. Methods Softw. 27(2), 251–273 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gebremedhin, A.H., Tarafdar, A., Pothen, A., Walther, A.: Efficient computation of sparse Hessians using coloring and automatic differentiation. INFORMS J. Comput. 21(2), 209–223 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev–Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 55(01), 113–130 (1997)

    Article  MATH  Google Scholar 

  7. Amat, S., Busquier, S.: Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336(1), 243–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, X., Kou, J.: Semilocal convergence and R-order for modified Chebyshev–Halley methods. J. Numer. Algorithms 64(1),105–126 (2013)

  9. Ezquerro, J.A., Hern, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer. Anal. Comput. Math. 77(1), 70–77 (2005)

    Article  Google Scholar 

  10. Xu, X., Ling, Y.: Semilocal convergence for Halley’s method under weak Lipschitz condition. Appl. Math. Comput. 215(8), 3057–3067 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Susanto, H., Karjanto, N.: Newtons methods basins of attraction revisited. Appl. Math. Comput. 215(3), 1084–1090 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yau, L., Ben-Israel, A.: The Newton and Halley methods for complex roots. Am. Math. Mon. 105(9), 806–818 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gundersen, G., Steihaug, T.: Sparsity in higher order methods for unconstrained optimization. Optim. Methods Softw. 27(2), 275–294 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gundersen, G., Steihaug, T.: On diagonally structured problems in unconstrained optimization using an inexact super Halley method. J. Comput. Appl. Math. 236(15), 3685–3695 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gundersen, G., Steihaug, T.: On large-scale unconstrained optimization problems and higher order methods. Optim. Methods Softw. 25(3), 337–358 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Papadimitriou, D.I., Giannakoglou, K.C.: Robust design in aerodynamics using third-order sensitivity analysis based on discrete adjoint. Application to quasi-1D flows. Int. J. Numer. Methods Fluids 69, 691–709 (2012)

    Article  MathSciNet  Google Scholar 

  17. Papdimitriou, D.I., Giannakoglou, K.C.: Third-order sensitivity analysis for robust aerodynamic design using continuous adjoint. Int. J. Numer. Methods Fluids 71, 652–670 (2013)

    Article  Google Scholar 

  18. Ozaki, I., Kimura, F., Berz, M.: Higher-order sensitivity analysis of finite element method by automatic differentiation. Comput. Mech. 16(4), 223–234 (1995)

    Article  MATH  Google Scholar 

  19. Ederington, L.H., Guan, W.: Higher order greeks. J. Deriv. 14(3), 7–34 (2007)

    Article  Google Scholar 

  20. Kariwala, V.: Automatic differentiation-based quadrature method of moments for solving population balance equations. AIChE J. 58(3), 842–854 (2012)

    Article  Google Scholar 

  21. Corliss, G.F.F., Griewank, A., Henneberger, P.: High-order stiff ODE solvers via automatic differentiation and rational prediction. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds.) Lecture notes in computer science, pp. 114–125. Springer, Berlin, Heidelberg (1997)

  22. Guckenheimer, J., Meloon, B.: Computing periodic orbits and their bifurcations with automatic differentiation. SIAM J. Sci. Comput. 22(3), 951–985 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Griewank, A., Walther, A., Utke, J.: Evaluating higher derivative tensors by forward propagation of univariate Taylor series. Math. Comput. 69(231), 1117–1130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Naumann, U.: The art of differentiating computer programs: An introduction to algorithmic differentiation. Number 24 in Software, Environments, and Tools. SIAM, Philadelphia (2012)

  25. Neidinger, R.D.: An efficient method for the numerical evaluation of partial derivatives of arbitrary order. ACM Trans. Math. Softw. 18(2), 159–173 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fraenkel, L.E.: Formulae for high derivatives of composite functions. Math. Proc. Camb. Philos. Soc. 83(02), 159 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22(2), 131–167 (1996)

    Article  MATH  Google Scholar 

  28. Bongartz, I., Conn, A.R., Gould, N., Toint, P.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

  29. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J. Optim. Theory Appl. 30(1), 127–129 (1980)

    Article  MATH  Google Scholar 

  30. Luksan, L., Vlcek, J.: Test problems for unconstrained optimization. Technical Report 897, Academy of Sciences of the Czech Republic (2003)

  31. Abate, J., Bischof, C., Roh, L., Carle, A.: Algorithms and design for a second-order automatic differentiation module. In: Proceedings of the 1997 International Symposium on Symbolic and Agebraic Computation (ACM), pp. 149–155, New York (1997)

  32. Walther, A., Griewank, A.: Advantages of binomial checkpointing for memory-reduced adjoint calculations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 834–843. Springer, Berlin, Heidelberg (2004). ISBN: 978-3-642-62288-5. doi:10.1007/978-3-642-18775-9_82

  33. Sternberg, J., Griewank, A.: Reduction of storage requirement by checkpointing for time-dependent optimal control problems in ODEs. In: Norris, B., Bücker, M., Corliss, G., Hovland, P., Naumann, U. (eds.) Automatic Differentiation: Applications, Theory, and Implementations, 0, pp. 99–110. Springer, 1 edition (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Gower.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gower, R.M., Gower, A.L. Higher-order reverse automatic differentiation with emphasis on the third-order. Math. Program. 155, 81–103 (2016). https://doi.org/10.1007/s10107-014-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0827-4

Keywords

Mathematics Subject Classification