Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Total variation bounds on the expectation of periodic functions with applications to recourse approximations

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive a lower and upper bound for the expectation of periodic functions, depending on the total variation of the probability density function of the underlying random variable. Using worst-case analysis we derive tighter bounds for functions that are periodically monotone. These bounds can be used to evaluate the performance of approximations for both continuous and integer recourse models. In this paper, we introduce a new convex approximation for totally unimodular recourse models, and we show that this convex approximation has the best worst-case error bound possible, improving previous bounds with a factor 2. Moreover, we use similar analysis to derive error bounds for two types of discrete approximations of continuous recourse models with continuous random variables. Furthermore, we derive a tractable Lipschitz constant for pure integer recourse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Birge, J.R.: Aggregation bounds in stochastic linear programming. Math. Program. 31, 25–41 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  3. Birge, J.R., Wallace, S.W.: A separable piecewise linear upper bound for stochastic linear programs. SIAM J. Control Optim. 26, 725–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986)

  5. Birge, J.R., Wets, R.J.-B.: Computing bounds for stochastic programming problems by means of a generalized moment problem. Math. Oper. Res. 12, 149–162 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edirisinghe, N.C.P., Ziemba, W.T.: Bounds for two-stage stochastic programs with fixed recourse. Math. Oper. Res. 19, 292–313 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmundson, H.P.: Bounds on the Expectation of a Convex Function of a Random Variable. Technical Report Paper 982, The RAND Corporation, Santa Monica (1956)

  10. Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions—the dependent case. Math. Oper. Res. 13, 377–394 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gassmann, H., Ziemba, W.T.: A tight upper bound for the expectation of a convex function of a multivariate random variable. Math. Program. Study 27, 39–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gassmann, H.I., Ziemba, W.T. (eds.): Stochastic Programming: Applications in Finance, Energy, Planning and Logistics. World Scientific Series in Finance: Volume 4, World Scientific, Singapore (2013)

  13. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Higle, J.L., Sen, S.: Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  15. Jensen, J.L.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kall, P.: On approximations and stability in stochastic programming. In: Guddat, J., Jongen, H.T., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics, pp 387–407. Akademie-Verlag, Berlin (1987)

  17. Kall, P.: An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30, 267–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3, 257–271 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Klein Haneveld, W.K., Stougie, L., van der Vlerk, M.H.: Simple integer recourse models: convexity and convex approximations. Math. Program. 108, 435–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic integer programming: general models and algorithms. Ann. Oper. Res. 85, 39–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Louveaux, F.V., Schultz, R.: Stochastic integer programming. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, pp. 213–266. Elsevier, Amsterdam (2003)

  22. Louveaux, F.V., van der Vlerk, M.H.: Stochastic programming with simple integer recourse. Math. Program. 61, 301–325 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30, 743–746 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  25. Pflug, G.Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89, 251–271 (2001)

  26. Rinnooy Kan, A.H.G., Stougie, L.: Stochastic integer programming. In: Ermoliev, Yu., Wets, R.J.-B. (eds.) Numerical Techniques for Stochastic Optimization, Volume 10 of Springer Ser. Comput. Math, pp. 201–213. Springer, Berlin (1988)

    Google Scholar 

  27. Romeijnders, W., van der Vlerk, M.H., Klein Haneveld, W.K.: Convex approximations of totally unimodular integer recourse models: a uniform error bound (submitted). See also SPePS (2013)

  28. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, pp. 483–554. Elsevier, Amsterdam (2003)

  29. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  30. Schultz, R.: Continuity properties of expectation functions in stochastic integer programming. Math. Oper. Res. 18, 578–589 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sen, S.: Algorithms for stochastic mixed-integer programming models. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Handbooks in Operations Research and Management Science, Volume 12: Discrete Optimization, pp. 515–558. Elsevier, Amsterdam (2005)

  32. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  33. van der Vlerk, M.H.: Convex approximations for complete integer recourse models. Math. Program. 99, 297–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wallace, S.W., Ziemba, W.T. (eds.).: Applications of Stochastic Programming. MPS-SIAM Series on Optimization (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Romeijnders.

Additional information

This research is supported by The Netherlands Organisation for Scientific Research (NWO).

Appendix

Appendix

In this appendix we give the proofs of Lemmas 1 and 2 of Sect. 1.1.

Proof of Lemma 1

Properties (i) and (ii) follow trivially from the definition of \(M\) and \(N\).

To show (iii) let \(r > 0\) be given, and consider \(\bar{\varphi }_r(x) := \varphi (x/r), \, x \in \mathbb {R}^{}\). We will show that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\), there exists \(g \in \mathcal{{F}}\) with \(|\varDelta |g \le rB\) such that \(\mathbb {E}_{f}[\bar{\varphi }_r(\omega )] = \mathbb {E}_g[\varphi (\omega )]\), and vice versa, that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le rB\) there exists \(g \in \mathcal{{F}}\) with \(|\varDelta |g \le B\) such that \(\mathbb {E}_{f}[\varphi (\omega )] = \mathbb {E}_g[\bar{\varphi }_r(\omega )]\). Together these results imply that (iii) holds. Observe that for \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\) the pdf \(g\) defined as \(g(x) := rf(rx), \, x \in \mathbb {R}^{}\) satisfies the first conditions and for \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le rB\) the pdf \(g\) defined as \(g(x) := r^{-1}f(x/r)\) satisfies the latter.

Similarly, for \(\hat{\varphi }(x) := \varphi (-x), \, x \in \mathbb {R}^{}\), let \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\) be given. Then, \(g(x) := f(-x), \, x \in \mathbb {R}^{},\) satisfies \(g \in \mathcal{{F}}\) with \(|\varDelta |g = |\varDelta |f \le B\) and \(\mathbb {E}_{f}[\hat{\varphi }(\omega )] = \mathbb {E}_{g}[\varphi (\omega )]\), implying

$$\begin{aligned} M(\hat{\varphi },B) \ge M(\varphi ,B) \quad \text{ and } \quad N(\hat{\varphi },B) \le N(\varphi ,B). \end{aligned}$$

Since \(\varphi (x) = \hat{\varphi }(-x), \, x \in \mathbb {R}^{}\), the reverse inequalities hold as well, proving (iv).

Finally, property (v) can be proven in a similar way, using that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\), and \(\beta \in \mathbb {R}^{}\), the pdf \(g(x) {:=} f(x+\beta ), \, x \in \mathbb {R}^{},\) satisfies \(|\varDelta |g = |\varDelta |f \le B\).\(\square \)

Proof of Lemma 2

Since for every \(f^0,f^1 \in \mathcal{{F}}\) with \(|\varDelta |f^0 \le B\) and \(|\varDelta |f^1 \le B\), and \(0 \le t \le 1\), the pdf \(f := (1-t)f^0 + tf^1\) satisfies

$$\begin{aligned} |\varDelta |f \le (1-t)|\varDelta |f^0 + t|\varDelta |f^1 \le B, \end{aligned}$$

it follows that the constraint \(|\varDelta |f \le B\) in \(M(\varphi ,B)\) and \(N(\varphi ,B)\) is convex. Since, in addition, the objective \(\mathbb {E}_{f}[\varphi (\omega )]\) is linear in \(f\), we conclude that both \(M(\varphi ,B)\) and \(N(\varphi ,B)\) are convex optimization problems with a linear objective. Since \(M(\varphi ,B)\) is a maximization problem and \(N(\varphi ,B)\) is a minimization problem, it follows that \(M(\varphi ,B)\) is concave in \(B\), and \(N(\varphi ,B)\) is convex in \(B\), respectively.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeijnders, W., van der Vlerk, M.H. & Klein Haneveld, W.K. Total variation bounds on the expectation of periodic functions with applications to recourse approximations. Math. Program. 157, 3–46 (2016). https://doi.org/10.1007/s10107-014-0829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0829-2

Keywords

Mathematics Subject Classification