Abstract
We derive a lower and upper bound for the expectation of periodic functions, depending on the total variation of the probability density function of the underlying random variable. Using worst-case analysis we derive tighter bounds for functions that are periodically monotone. These bounds can be used to evaluate the performance of approximations for both continuous and integer recourse models. In this paper, we introduce a new convex approximation for totally unimodular recourse models, and we show that this convex approximation has the best worst-case error bound possible, improving previous bounds with a factor 2. Moreover, we use similar analysis to derive error bounds for two types of discrete approximations of continuous recourse models with continuous random variables. Furthermore, we derive a tractable Lipschitz constant for pure integer recourse models.
Similar content being viewed by others
References
Birge, J.R.: Aggregation bounds in stochastic linear programming. Math. Program. 31, 25–41 (1985)
Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)
Birge, J.R., Wallace, S.W.: A separable piecewise linear upper bound for stochastic linear programs. SIAM J. Control Optim. 26, 725–739 (1988)
Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986)
Birge, J.R., Wets, R.J.-B.: Computing bounds for stochastic programming problems by means of a generalized moment problem. Math. Oper. Res. 12, 149–162 (1987)
Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)
Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)
Edirisinghe, N.C.P., Ziemba, W.T.: Bounds for two-stage stochastic programs with fixed recourse. Math. Oper. Res. 19, 292–313 (1994)
Edmundson, H.P.: Bounds on the Expectation of a Convex Function of a Random Variable. Technical Report Paper 982, The RAND Corporation, Santa Monica (1956)
Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions—the dependent case. Math. Oper. Res. 13, 377–394 (1988)
Gassmann, H., Ziemba, W.T.: A tight upper bound for the expectation of a convex function of a multivariate random variable. Math. Program. Study 27, 39–53 (1986)
Gassmann, H.I., Ziemba, W.T. (eds.): Stochastic Programming: Applications in Finance, Energy, Planning and Logistics. World Scientific Series in Finance: Volume 4, World Scientific, Singapore (2013)
Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)
Higle, J.L., Sen, S.: Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Kluwer, Dordrecht (1996)
Jensen, J.L.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)
Kall, P.: On approximations and stability in stochastic programming. In: Guddat, J., Jongen, H.T., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics, pp 387–407. Akademie-Verlag, Berlin (1987)
Kall, P.: An upper bound for SLP using first and total second moments. Ann. Oper. Res. 30, 267–276 (1991)
Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 3, 257–271 (2007)
Klein Haneveld, W.K., Stougie, L., van der Vlerk, M.H.: Simple integer recourse models: convexity and convex approximations. Math. Program. 108, 435–473 (2006)
Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic integer programming: general models and algorithms. Ann. Oper. Res. 85, 39–57 (1999)
Louveaux, F.V., Schultz, R.: Stochastic integer programming. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, pp. 213–266. Elsevier, Amsterdam (2003)
Louveaux, F.V., van der Vlerk, M.H.: Stochastic programming with simple integer recourse. Math. Program. 61, 301–325 (1993)
Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30, 743–746 (1959)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)
Pflug, G.Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89, 251–271 (2001)
Rinnooy Kan, A.H.G., Stougie, L.: Stochastic integer programming. In: Ermoliev, Yu., Wets, R.J.-B. (eds.) Numerical Techniques for Stochastic Optimization, Volume 10 of Springer Ser. Comput. Math, pp. 201–213. Springer, Berlin (1988)
Romeijnders, W., van der Vlerk, M.H., Klein Haneveld, W.K.: Convex approximations of totally unimodular integer recourse models: a uniform error bound (submitted). See also SPePS (2013)
Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, pp. 483–554. Elsevier, Amsterdam (2003)
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)
Schultz, R.: Continuity properties of expectation functions in stochastic integer programming. Math. Oper. Res. 18, 578–589 (1993)
Sen, S.: Algorithms for stochastic mixed-integer programming models. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Handbooks in Operations Research and Management Science, Volume 12: Discrete Optimization, pp. 515–558. Elsevier, Amsterdam (2005)
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)
van der Vlerk, M.H.: Convex approximations for complete integer recourse models. Math. Program. 99, 297–310 (2004)
van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)
Wallace, S.W., Ziemba, W.T. (eds.).: Applications of Stochastic Programming. MPS-SIAM Series on Optimization (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research is supported by The Netherlands Organisation for Scientific Research (NWO).
Appendix
Appendix
In this appendix we give the proofs of Lemmas 1 and 2 of Sect. 1.1.
Proof of Lemma 1
Properties (i) and (ii) follow trivially from the definition of \(M\) and \(N\).
To show (iii) let \(r > 0\) be given, and consider \(\bar{\varphi }_r(x) := \varphi (x/r), \, x \in \mathbb {R}^{}\). We will show that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\), there exists \(g \in \mathcal{{F}}\) with \(|\varDelta |g \le rB\) such that \(\mathbb {E}_{f}[\bar{\varphi }_r(\omega )] = \mathbb {E}_g[\varphi (\omega )]\), and vice versa, that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le rB\) there exists \(g \in \mathcal{{F}}\) with \(|\varDelta |g \le B\) such that \(\mathbb {E}_{f}[\varphi (\omega )] = \mathbb {E}_g[\bar{\varphi }_r(\omega )]\). Together these results imply that (iii) holds. Observe that for \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\) the pdf \(g\) defined as \(g(x) := rf(rx), \, x \in \mathbb {R}^{}\) satisfies the first conditions and for \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le rB\) the pdf \(g\) defined as \(g(x) := r^{-1}f(x/r)\) satisfies the latter.
Similarly, for \(\hat{\varphi }(x) := \varphi (-x), \, x \in \mathbb {R}^{}\), let \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\) be given. Then, \(g(x) := f(-x), \, x \in \mathbb {R}^{},\) satisfies \(g \in \mathcal{{F}}\) with \(|\varDelta |g = |\varDelta |f \le B\) and \(\mathbb {E}_{f}[\hat{\varphi }(\omega )] = \mathbb {E}_{g}[\varphi (\omega )]\), implying
Since \(\varphi (x) = \hat{\varphi }(-x), \, x \in \mathbb {R}^{}\), the reverse inequalities hold as well, proving (iv).
Finally, property (v) can be proven in a similar way, using that for every \(f \in \mathcal{{F}}\) with \(|\varDelta |f \le B\), and \(\beta \in \mathbb {R}^{}\), the pdf \(g(x) {:=} f(x+\beta ), \, x \in \mathbb {R}^{},\) satisfies \(|\varDelta |g = |\varDelta |f \le B\).\(\square \)
Proof of Lemma 2
Since for every \(f^0,f^1 \in \mathcal{{F}}\) with \(|\varDelta |f^0 \le B\) and \(|\varDelta |f^1 \le B\), and \(0 \le t \le 1\), the pdf \(f := (1-t)f^0 + tf^1\) satisfies
it follows that the constraint \(|\varDelta |f \le B\) in \(M(\varphi ,B)\) and \(N(\varphi ,B)\) is convex. Since, in addition, the objective \(\mathbb {E}_{f}[\varphi (\omega )]\) is linear in \(f\), we conclude that both \(M(\varphi ,B)\) and \(N(\varphi ,B)\) are convex optimization problems with a linear objective. Since \(M(\varphi ,B)\) is a maximization problem and \(N(\varphi ,B)\) is a minimization problem, it follows that \(M(\varphi ,B)\) is concave in \(B\), and \(N(\varphi ,B)\) is convex in \(B\), respectively.\(\square \)
Rights and permissions
About this article
Cite this article
Romeijnders, W., van der Vlerk, M.H. & Klein Haneveld, W.K. Total variation bounds on the expectation of periodic functions with applications to recourse approximations. Math. Program. 157, 3–46 (2016). https://doi.org/10.1007/s10107-014-0829-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-014-0829-2
Keywords
- Periodic functions
- Total variation
- Stochastic Programming
- Integer recourse
- Convex approximations
- Discrete approximations