Abstract
Even and odd pairs are important tools in the study of perfect graphs and were instrumental in the proof of the Strong Perfect Graph Theorem. We suggest that such pairs impose a lot of structure also in arbitrary, not just perfect graphs. To this end, we show that the presence of even or odd pairs in graphs imply a special structure of the stable set polytope. In fact, we give a polyhedral characterization of even and odd pairs.
References
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006). doi:10.4007/annals.2006.164.51
Chudnovsky, M., Seymour, P.: Even pairs in Berge graphs. J. Combin. Theory Ser. B 99(2), 370–377 (2009). doi:10.1016/j.jctb.2008.08.002
Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory Ser. B 18(2), 138–154 (1975). doi:10.1016/0095-8956(75)90041-6
Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1(1), 168–194 (1971). doi:10.1007/BF01584085
Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 306(10–11), 867–875 (2006). doi:10.1016/j.disc.2006.03.007
Meyniel, H.: A new property of critical imperfect graphs and some consequences. Eur. J. Combin. 8(3), 313–316 (1987). doi:10.1016/S0195-6698(87)80037-9
Meyniel, H., Olariu, S.: A new conjecture about minimal imperfect graphs. J. Combin. Theory Ser. B 47(2), 244–247 (1989). doi:10.1016/0095-8956(89)90024-5
Ramirez-Alfonsin, J.L., Reed, B.A. (eds.): Perfect Graphs. Wiley, Chichester, UK (2001)
Reed, B.: Perfection, parity, planarity, and packing paths. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 407–419. University of Waterloo Press (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Witt, J.T., Lübbecke, M.E. & Reed, B. Polyhedral results on the stable set problem in graphs containing even or odd pairs. Math. Program. 171, 519–522 (2018). https://doi.org/10.1007/s10107-017-1168-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-017-1168-x