Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Polyhedral results on the stable set problem in graphs containing even or odd pairs

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Even and odd pairs are important tools in the study of perfect graphs and were instrumental in the proof of the Strong Perfect Graph Theorem. We suggest that such pairs impose a lot of structure also in arbitrary, not just perfect graphs. To this end, we show that the presence of even or odd pairs in graphs imply a special structure of the stable set polytope. In fact, we give a polyhedral characterization of even and odd pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006). doi:10.4007/annals.2006.164.51

    Article  MathSciNet  MATH  Google Scholar 

  2. Chudnovsky, M., Seymour, P.: Even pairs in Berge graphs. J. Combin. Theory Ser. B 99(2), 370–377 (2009). doi:10.1016/j.jctb.2008.08.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory Ser. B 18(2), 138–154 (1975). doi:10.1016/0095-8956(75)90041-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1(1), 168–194 (1971). doi:10.1007/BF01584085

    Article  MathSciNet  MATH  Google Scholar 

  5. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 306(10–11), 867–875 (2006). doi:10.1016/j.disc.2006.03.007

    Article  MATH  Google Scholar 

  6. Meyniel, H.: A new property of critical imperfect graphs and some consequences. Eur. J. Combin. 8(3), 313–316 (1987). doi:10.1016/S0195-6698(87)80037-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Meyniel, H., Olariu, S.: A new conjecture about minimal imperfect graphs. J. Combin. Theory Ser. B 47(2), 244–247 (1989). doi:10.1016/0095-8956(89)90024-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Ramirez-Alfonsin, J.L., Reed, B.A. (eds.): Perfect Graphs. Wiley, Chichester, UK (2001)

  9. Reed, B.: Perfection, parity, planarity, and packing paths. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 407–419. University of Waterloo Press (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco E. Lübbecke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witt, J.T., Lübbecke, M.E. & Reed, B. Polyhedral results on the stable set problem in graphs containing even or odd pairs. Math. Program. 171, 519–522 (2018). https://doi.org/10.1007/s10107-017-1168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1168-x

Keywords

Mathematics Subject Classification