Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Due to the possible lack of primal-dual-type error bounds, it was not clear whether the Karush–Kuhn–Tucker (KKT) residuals of the sequence generated by the augmented Lagrangian method (ALM) for solving convex composite conic programming (CCCP) problems converge superlinearly. In this paper, we resolve this issue by establishing the R-superlinear convergence of the KKT residuals generated by the ALM under only a mild quadratic growth condition on the dual of CCCP, with easy-to-implement stopping criteria for the augmented Lagrangian subproblems. This discovery may help to explain the good numerical performance of several recently developed semismooth Newton-CG based ALM solvers for linear and convex quadratic semidefinite programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the convergence of the PPA, one does not need the parameters to be increasing as long as \(\sigma _k\) is bounded away from zero.

  2. The Lipschitz continuity of a set-valued mapping may refer to other properties elsewhere, such as in [52, Definition 9.26].

  3. For NLP, the constraint nondegeneracy coincides with the linear independence constraint qualification [46].

References

  1. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77(2), 111–128 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Alves, M.M., Svaiter, B.F.: A note on Fejér-monotone sequences in product spaces and its applications to the dual convergence of augmented Lagrangian methods. Math. Program. 155(1), 613–616 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Artacho, F.J.A., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15(2), 365–380 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE’s and control. Pac. J. Optim. 5(1), 17–37 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Program. 86(1), 135–160 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Bergounioux, M.: Use of augmented Lagrangian methods for the optimal control of obstacle problems. J. Optim. Theory Appl. 95(1), 101–126 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  8. Bhansali, V., Wise, B.: Forecasting portfolio risk in normal and stressed market. J. Risk 4(1), 91–106 (2001)

    Google Scholar 

  9. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  10. Chen, C.H., Liu, Y.J., Sun, D.F., Toh, K.-C.: A semismooth Newton-CG dual proximal point algorithm for matrix spectral norm approximation problems. Math. Program. 155(1), 435–470 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Conn, A.R., Gould, N., Sartenaer, A., Toint, P.L.: Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim. 6(3), 674–703 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Conn, A.R., Gould, N., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545–572 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Contesse-Becker, L.: Extended convergence results for the method of multipliers for non-strictly binding inequality constraints. J. Optim. Theory Appl. 79(2), 273–310 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Cui, Y., Ding, C., Zhao, X.Y.: Quadratic growth conditions for convex matrix optimization problems associated with spectral functions. SIAM J. Optim. 27(4), 2332–2355 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Cui, Y., Sun, D.F.: A complete characterization on the robust isolated calmness of the nuclear norm regularized convex optimization problems. J. Comput. Math. 36(3), 441–458 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Ding, C.: An Introduction to a Class of Matrix Optimization Problems. PhD thesis, National University of Singapore (2012)

  17. Ding, C., Sun, D.F., Zhang, L.W.: Characterization of the robust isolated calmness for a class of conic programming problems. SIAM J. Optim. 27(1), 67–90 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Dontchev, A.L., Rockafellar, R.T.: Characterizations of Lipschitz stability in nonlinear programming. In Mathematical Programming With Data Perturbations, Marcel Dekker, New York, pp. 65–82 (1997)

  19. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, New York (2009)

    MATH  Google Scholar 

  20. Dorsch, D., Gómez, W., Shikhman, V.: Sufficient optimality conditions hold for almost all nonlinear semidefinite programs. Math. Program. 158(1), 77–97 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1), 319–348 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Fernández, D., Solodov, M.V.: Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim. 22(2), 384–407 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to Numerical Solutions of Boundary Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  24. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22(6), 936–964 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Golshtein, E.G., Tretyakov, N.V.: Modified Lagrangians and Monotone Maps in Optimization. Wiley, New York (1989)

    MATH  Google Scholar 

  26. Han, D.R., Sun, D.F., Zhang, L.W.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622–637 (2018)

    MathSciNet  Google Scholar 

  27. Han, D.R., Sun, D.F., Zhang, L.W.: Linear rate convergence of the alternating direction method of multipliers for convex composite quadratic and semi-definite programming. arXiv:1508.02134 (2015)

  28. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    MathSciNet  MATH  Google Scholar 

  29. Higham, N.J.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22(3), 329–343 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Higham, N.J., Strabić, N.: Bounds for the distance to the nearest correlation matrix. SIAM J. Matrix Anal. A 37(3), 1088–1102 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Ito, K., Kunisch, K.: The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces. Math. Program. 46(1), 341–360 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems. Math. Program. 142(1), 591–604 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Jiang, K.F., Sun, D.F., Toh, K.-C.: Solving nuclear norm regularized and semidefinite matrix least squares problems with linear equality constraints. In Discrete Geometry and Optimization. Springer, pp. 133–162 (2013)

  34. Klatte, D.: Upper Lipschitz behavior of solutions to perturbed \(C^{1, 1}\) programs. Math. Program. 88(2), 285–311 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Leventhal, D.: Metric subregularity and the proximal point method. J. Math. Anal. Appl. 360(2), 681–688 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Li, X.D., Sun, D.F., Toh, K.-C.: QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 1–41 (2018). in print

    MathSciNet  MATH  Google Scholar 

  37. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Optim. 22(2), 277–293 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Mordukhovich, B.S., Sarabi, M.E.: Critical multipliers in variational systems via second-order generalized differentiation. Math. Program. 169(2), 605–645 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Nilssen, T.K., Mannseth, T., Tai, X.-C.: Permeability estimation with the augmented Lagrangian method for a nonlinear diffusion equation. Comput. Geosci. 7(1), 27–47 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Pataki, G., Tuncȩl, L.: On the generic properties of convex optimization problems in conic form. Math. Program. 89(3), 449–457 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27(1), 170–191 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic, New York (1969)

    Google Scholar 

  43. Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. A 28(2), 360–385 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Robinson, S.M.: An implicit-function theorem for generalized variational inequalties. Technical summary report no. 1672, Mathematics Research Center, University of Wisconsin-Madison, (1976); available from National Technical Information Service under Accession No. ADA031952

  45. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Study 14, 206–214 (1981)

    MathSciNet  MATH  Google Scholar 

  46. Robinson, S.M.: Constraint nondegeneracy in variational analysis. Math. Oper. Res. 28(2), 201–232 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  48. Rockafellar, R.T.: Local boundedness of nonlinear monotone operators. Mich. Math. J. 16(4), 397–407 (1969)

    MathSciNet  MATH  Google Scholar 

  49. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

    MATH  Google Scholar 

  50. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    MathSciNet  MATH  Google Scholar 

  51. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  52. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    MATH  Google Scholar 

  53. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(2), 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Shapiro, A.: Sensitivity analysis of generalized equations. J. Math. Sci. 115(4), 2554–2565 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29(3), 479–491 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Sun, D.F., Sun, J., Zhang, L.W.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114(2), 349–391 (2008)

    MathSciNet  MATH  Google Scholar 

  57. Sun, J.: On Monotropic Piecewise Qudratic Programming. PhD thesis, University of Washington, Seattle (1986)

  58. Toint, P.L.: Global convergence of a class of trust-region methods for nonconvex minimization in hilbert space. IMA J. Numer. Anal. 8(2), 231–252 (1988)

    MathSciNet  MATH  Google Scholar 

  59. Yang, L.Q., Sun, D.F., Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3), 1–36 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Zhao, X.Y., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Zhou, Z.R., So, A.M.C.: A unified approach to error bounds for structured convex optimization problems. Math. Program. 165(2), 689–728 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and two anonymous referees for their helpful comments on improving the quality of this paper. Thanks also go to Professor Terry Rockafellar for his comments on the unboundedness of the Lagrangian multipliers of the KKT solution mapping of the original form leading to the current form of Example 2 during his visit to the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Sun.

Additional information

The research of the second author was supported in part by a start-up research grant from the Hong Kong Polytechnic University.

Appendix.

Appendix.

1.1 1: Proof of Lemma 2

Proof

Obviously if the quadratic growth condition for (D2) holds at \(({\bar{w}}, {\bar{y}}, -\mathcal {A}^*{\bar{w}} - \mathcal {B}^*{\bar{y}} - c)\in \mathrm{SOL}_{\mathrm{D2}}\), then the quadratic growth condition for (D) holds at \({\bar{y}}\in \mathrm{SOL}_{\mathrm{D}}\). Now we prove the reverse implication. We first show that there exist positive constants \(\varepsilon \) and \(\mu \) such that

$$\begin{aligned} -g^0(w,{y},{s}) \geqslant -\sup \,(\mathrm{D}) + \mu \Vert w- {\bar{w}}\Vert ^2, \quad \forall \; (w,y,s)\in \mathrm{F}_{\mathrm{D2}}\cap \mathbb {B}_{\varepsilon }({\bar{w}}, {\bar{y}}, {\bar{s}}). \end{aligned}$$
(31)

It follows from \({\bar{w}}\in \mathrm{dom}\,h^*\) and the local strong convexity of \(h^*\) that there exist positive constants \(\varepsilon \) and \(\mu \) such that

$$\begin{aligned} h^*(w)\geqslant h^*({\bar{w}}) + \langle \nabla h^*({\bar{w}}), w - {\bar{w}}\rangle + \mu \Vert w - {\bar{w}}\Vert ^2, \quad \forall \; w\in \mathbb {B}_{\varepsilon }({\bar{w}})\cap \mathrm{dom}\,h^*. \end{aligned}$$
(32)

Let \({\bar{x}}\in \mathrm{SOL}_P\) be given such that \(( {\bar{w}}, {\bar{y}},{\bar{s}}, {\bar{x}})\) satisfies the KKT optimality condition (10). By the convexity of \(p^*\), we also get

$$\begin{aligned}&p^*(s)\geqslant p^*({\bar{s}}) + \langle \, {\bar{x}}\,,s-{\bar{s}}\,\rangle = p^*({\bar{s}}) +\langle \, {\bar{x}}\,, \mathcal {A}^*(-w+{\bar{w}}) + \mathcal {B}^*(-y + {\bar{y}})\,\rangle ,\nonumber \\&\quad \forall \; (w,y,s)\in \mathrm{F}_{\mathrm{D2}}. \end{aligned}$$
(33)

Note that \(\mathcal {B}{\bar{x}}- b\in \mathcal {N}_{\mathcal {Q}^\circ }({\bar{y}})\) implies \(\langle \mathcal {B}{\bar{x}}-b, y\rangle \leqslant 0\) for any \(y\in \mathcal {Q}^\circ \) and \(\langle \mathcal {B}{\bar{x}}-b, {\bar{y}}\rangle = 0\). One can thus derive the inequality (31) by adding the two inequalities (32) and (33). Now by shrinking \(\varepsilon \) if necessary, we have, for any \((w,y,s)\in \mathrm{F}_{\mathrm{D2}}\cap \mathbb {B}_{\varepsilon }({\bar{w}}, {\bar{y}}, {\bar{s}})\),

$$\begin{aligned} \begin{array}{rl} -g^0(w,y,s) \geqslant &{} -g^0(y)/2 - g^0(w,{y},s)/2\\ \geqslant &{} (-\sup \,(\mathrm{D}) + \kappa _2\mathrm{dist}^2\,(y, \mathrm{SOL}_{\mathrm{D}}))/2+ (-\sup \,(\mathrm{D}) + \mu \Vert w -{\bar{w}}\Vert ^2)/2\\ \geqslant &{} -\sup \,(\mathrm{D}) + \min \{\kappa _2/2, \mu /2\}(\mathrm{dist}^2\,(y, \mathrm{SOL}_{\mathrm{D}})+\Vert w -{\bar{w}}\Vert ^2), \end{array} \end{aligned}$$

where in the second inequality the first term is due to the assumed quadratic growth condition for (D) at \({\bar{y}}\) with modulus \(\kappa _2\), and the second term comes from (31). Finally, it follows that for any \({\hat{y}}\in \mathrm{SOL}_{\mathrm{D}}\) and any \((w,y,s)\in \mathrm{F}_{\mathrm{D2}}\cap \mathbb {B}_{\varepsilon }({\bar{w}}, {\bar{y}}, {\bar{s}})\),

$$\begin{aligned} \begin{array}{rl} \mathrm{dist}^2((w,y,s), \mathrm{SOL}_{\mathrm{D2}})\leqslant &{} \Vert w - {\bar{w}}\Vert ^2 + \Vert y - {\hat{y}}\Vert ^2+ \Vert s - {\bar{s}}\Vert ^2 \\ =&{} \Vert w - {\bar{w}}\Vert ^2 + \Vert y - {\hat{y}}\Vert ^2+ \Vert \mathcal {A}^*(w - {\bar{w}}) + \mathcal {B}^*(y-{\hat{y}})\Vert ^2\\ \leqslant &{} (1+2\Vert \mathcal {A}^*\Vert ^2)\Vert w - {\bar{w}}\Vert ^2 + (1+2\Vert \mathcal {B}^*\Vert ^2)\Vert y - {\hat{y}}\Vert ^2, \end{array} \end{aligned}$$

which, with \({\hat{y}}: = \varPi _{\mathrm{SOL}_{\mathrm{D}}}(y)\), implies

$$\begin{aligned} \mathrm{dist}^2((w,y,s), \mathrm{SOL}_{\mathrm{D2}})\leqslant (1+2\Vert \mathcal {A}^*\Vert ^2)\Vert w - {\bar{w}}\Vert ^2 + (1+2\Vert \mathcal {B}^*\Vert ^2)\mathrm{dist}^2\,(y, \mathrm{SOL}_{\mathrm{D}}). \end{aligned}$$

Thus, the quadratic growth condition (11) holds at \(({\bar{w}}, {\bar{y}}, {\bar{s}})\in \mathrm{SOL}_{\mathrm{D2}}\) for (D2). \(\square \)

1.2 2: Proof of Proposition 1(c)

Proof

The convergence of \(\{z^k\}\) under criterion (A) has been proven in Proposition 1. To establish the desired convergence rate, we first recall that the calmness of the mapping \(T^{-1}\) at the origin for \(z^{\infty }\) with modulus \(\kappa \) asks for the existence of positive constants \(\varepsilon \) and \(\delta \) such that

$$\begin{aligned} \text {dist}(z, T^{-1}(0)) \leqslant \kappa \Vert u\Vert , \quad \forall \; z\in T^{-1}(u)\cap \mathbb {B}_{\delta }(z^\infty ), \;\, \forall \; u\in \mathbb {B}_{\varepsilon }(0). \end{aligned}$$

From parts (a) and (b) in Proposition 1 and the convergence of \(\{z^k\}\), we obtain that

$$\begin{aligned} P_k(z^k)\in T^{-1}((z^k - P_k(z^k))/\sigma _k),\ \forall \; k\geqslant 0 \quad \mathrm{and} \quad P_k(z^k) \rightarrow z^\infty \ \mathrm{as } \ k\rightarrow \infty , \end{aligned}$$

which, imply the existence of a nonnegative integer \({\bar{k}}\) such that

$$\begin{aligned} \text {dist}(P_k(z^k), T^{-1}(0)) \leqslant (\kappa /\sigma _k) \Vert z^k - P_k(z^k)\Vert , \quad \forall \; k\geqslant {\bar{k}}. \end{aligned}$$

Now taking \({\bar{z}} = \varPi _{T^{-1}(0)}(z^k)\) in Proposition 1(b), we deduce that for any \(k\geqslant 0\),

$$\begin{aligned} \begin{array}{ll} \Vert z^k - P_k(z^k)\Vert ^2&{} \leqslant \Vert z^k -\varPi _{T^{-1}(0)}(z^k)\Vert ^2 - \Vert P_k(z^k) -\varPi _{T^{-1}(0)}(z^k)\Vert ^2\\ &{} \leqslant \text {dist}^2(z^k,T^{-1}(0)) - \text {dist}^2(P_k(z^k),T^{-1}(0)). \end{array} \end{aligned}$$

Thus, it holds that

$$\begin{aligned} \text {dist}(P_k(z^k), T^{-1}(0))\leqslant \kappa /\sqrt{\kappa ^2 +\sigma _k^2}\,\text {dist}(z^k, T^{-1}(0)) , \quad \forall \, k\geqslant {\bar{k}}. \end{aligned}$$

Hence, if criterion (B) is also executed, we have that for any \(k\geqslant {\bar{k}}\),

$$\begin{aligned} \begin{array}{ll} &{} \Vert z^{k+1} - \varPi _{T^{-1}(0)}(P_k(z^k))\Vert \\ &{}\quad \leqslant \Vert z^{k+1} - P_k(z^k)\Vert + \Vert P_k(z^k)-\varPi _{T^{-1}(0)}(P_k(z^k))\Vert \\ &{}\quad \leqslant \eta _k\Vert z^{k+1} - z^k\Vert + \Vert P_k(z^k)-\varPi _{T^{-1}(0)}(P_k(z^k))\Vert \\ &{}\quad \leqslant \eta _k(\Vert z^{k+1} - \varPi _{T^{-1}(0)}(P_k(z^k))\Vert + \Vert z^k - P_k(z^k)\Vert )\\ &{}\qquad + (\eta _k+1)\Vert P_k(z^k)-\varPi _{T^{-1}(0)}(P_k(z^k))\Vert \\ &{}\quad \leqslant \eta _k\Vert z^{k+1} - \varPi _{T^{-1}(0)}(P_k(z^k))\Vert + \left[ \eta _k + (\eta _k+1)\kappa /\sqrt{\kappa ^2 +\sigma _k^2}\right] \text {dist}(z^k,T^{-1}(0)). \end{array} \end{aligned}$$

Then the inequality in part (c) of Proposition 1 readily follows from the fact that \(\text {dist}(z^{k+1}, T^{-1}(0))\leqslant \Vert z^{k+1} - \varPi _{T^{-1}(0)}(P_k(z^k))\Vert \) for any \(k\geqslant 0\). \(\square \)

1.3 3: Proof of Proposition 3(b)

Proof

By Lemma 1(b) and the convergence of \(\{y^k\}\), we have \(\mathrm{dist}\,(0, T_l(x^{k+1},y^{k+1}))\rightarrow 0\) under criterion \(({\widetilde{B}})\). Therefore, by the upper Lipschitz continuity of \(T_l^{-1}\) at the origin, we can derive, for k sufficiently large,

$$\begin{aligned} \begin{array}{rl} \mathrm{dist}\,((x^{k+1},y^{k+1}), T_l^{-1}(0))\leqslant &{} \kappa _l\,\mathrm{dist}\,(0, T_l(x^{k+1},y^{k+1}))\\ \leqslant &{} \kappa _l\,(\mathrm{dist}^2\,(0,\partial f_k(x^{k+1}) + (1/\sigma _k^2)\Vert y^{k+1}-y^k\Vert ^2)^{1/2}\\ \leqslant &{} (\kappa _l/\sigma _k)(1+\eta _k'^2)\Vert y^{k+1} - y^k\Vert . \end{array} \end{aligned}$$

This completes the proof of this part. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Sun, D. & Toh, KC. On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming. Math. Program. 178, 381–415 (2019). https://doi.org/10.1007/s10107-018-1300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1300-6

Keywords

Mathematics Subject Classification