Abstract
The small-world network, proposed by Watts and Strogatz, has been extensively studied for the past over ten years. In this paper, a generalized small-world network is proposed, which extends several small-world network models. Furthermore, some properties of a special type of generalized small-world network with given expectation of edge numbers have been investigated, such as the degree distribution and the isoperimetric number. These results are used to present a lower and an upper bounds for the clustering coefficient and the diameter of the given edge number expectation generalized small-world network, respectively. In other words, we prove mathematically that the given edge number expectation generalized small-world network possesses large clustering coefficient and small diameter.
Similar content being viewed by others
References
Milgram, S.: The small world problems. Psychology Today, 2, 67–70 (1967)
Watts, D. J., Strogatz, S. H.: Collective dynamics of “small world networks”. Nature, 393, 440–442 (1998)
Durett, R.: Random Graph Dynamics, Cambridge University, Cambridge, 2006
Newman, M. E. J.: The structure and function of complex netowrks. SIAM Rev., 45, 167–256 (2003)
Newman, M. E. J., Watts, D. J.: Renormalization group analysis of the small-world network model. Phys. Lett. A, 263, 341–346 (1999)
Watts, D. J.: Six Degrees, Norton, New York, 2003
Newman, M. E. J., Watts, D. J., Stogatz, S. H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA, 99, 2566–2572 (2002)
Newman, M. E. J., Moore, C., Watts, D. J.: Mean-field solution of the small world network model. Phys. Rev. Lett., 84, 3201–3204 (2000)
Barbour, A. D., Reinert, G.: Small worlds. Random Structures and Algorithms, 19, 54–74 (2001)
Barbour, A. D., Reinert, G.: Discrete small world networks. Electron. J. Combin., 11(47), 1234–1283 (2006)
Bollobás, B., Chung, F.: The diameter of a cycle plus a random matching. SIAM J. Discrete Math., 1, 328–333 (1988)
Barahona, M., Pecora, L. M.: Synchronization in small-world systems. Phys. Rev. Lett., 89, 054101 (2002)
Gade, P. M., Hu, C. K.: Synchronous chaos in coupled map with small-world interactions. Phys. Rev. E, 62, 6409–6413 (2000)
Hong, H., Choi, M. Y., Kim, B. J.: Synchronization on small-world networks. Phys. Rev. E, 65, 026139 (2002)
Lago-Fernandez, L. F., Huerta, R., Corbacho, et al.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett., 84, 2758–2761 (2000)
Olfati-Saber, R.: Ultrafast consensus in the small-world networks. In: Proceedings of American Control Conference, 2005, 2371–2378
Wang, X. F., Chen G.: Synchronization in small-world dynamical networks. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12, 187–192 (2002)
Gu, L., Zhang, X. D., Zhou, Q.: Consensus and synchronization problems on small-world networks. J. Math. Phys., 51(8), 082701 (2010)
Erdös, P., Rényi, A.: On the evolution of random graphs. Publication of Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61 (1960)
Bollobás, B.: Random Graphs, second edition, Cambridge University, Cambridge, 2001
Janson, S., Luczak, T., Rucinski, A.: Random Graphs, John Wiley, New York, 2000
Alon, N., Milman, V. D.: λ 1, Isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B, 38, 73–88 (1985)
Berman, A., Zhang, X. D.: Lower bounds for the eigenvalues of Laplacian matrices. Linear Algebra Appl., 316, 13–20 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by National Natural Science Foundation of China (Grant Nos. 10971137 and 11271256), National Basic Research Program of China 973 Program (Grant No. 2006CB805900) and the Grant of Science and Technology Commission of Shanghai Municipality (STCSM No. 09XD1402500)
Rights and permissions
About this article
Cite this article
Gu, L., Huang, H.L. & Zhang, X.D. The clustering coefficient and the diameter of small-world networks. Acta. Math. Sin.-English Ser. 29, 199–208 (2013). https://doi.org/10.1007/s10114-012-0387-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10114-012-0387-6