Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The clustering coefficient and the diameter of small-world networks

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The small-world network, proposed by Watts and Strogatz, has been extensively studied for the past over ten years. In this paper, a generalized small-world network is proposed, which extends several small-world network models. Furthermore, some properties of a special type of generalized small-world network with given expectation of edge numbers have been investigated, such as the degree distribution and the isoperimetric number. These results are used to present a lower and an upper bounds for the clustering coefficient and the diameter of the given edge number expectation generalized small-world network, respectively. In other words, we prove mathematically that the given edge number expectation generalized small-world network possesses large clustering coefficient and small diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milgram, S.: The small world problems. Psychology Today, 2, 67–70 (1967)

    Google Scholar 

  2. Watts, D. J., Strogatz, S. H.: Collective dynamics of “small world networks”. Nature, 393, 440–442 (1998)

    Article  Google Scholar 

  3. Durett, R.: Random Graph Dynamics, Cambridge University, Cambridge, 2006

    Book  Google Scholar 

  4. Newman, M. E. J.: The structure and function of complex netowrks. SIAM Rev., 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Newman, M. E. J., Watts, D. J.: Renormalization group analysis of the small-world network model. Phys. Lett. A, 263, 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Watts, D. J.: Six Degrees, Norton, New York, 2003

    Google Scholar 

  7. Newman, M. E. J., Watts, D. J., Stogatz, S. H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA, 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  8. Newman, M. E. J., Moore, C., Watts, D. J.: Mean-field solution of the small world network model. Phys. Rev. Lett., 84, 3201–3204 (2000)

    Article  Google Scholar 

  9. Barbour, A. D., Reinert, G.: Small worlds. Random Structures and Algorithms, 19, 54–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbour, A. D., Reinert, G.: Discrete small world networks. Electron. J. Combin., 11(47), 1234–1283 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Bollobás, B., Chung, F.: The diameter of a cycle plus a random matching. SIAM J. Discrete Math., 1, 328–333 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barahona, M., Pecora, L. M.: Synchronization in small-world systems. Phys. Rev. Lett., 89, 054101 (2002)

    Article  Google Scholar 

  13. Gade, P. M., Hu, C. K.: Synchronous chaos in coupled map with small-world interactions. Phys. Rev. E, 62, 6409–6413 (2000)

    Article  Google Scholar 

  14. Hong, H., Choi, M. Y., Kim, B. J.: Synchronization on small-world networks. Phys. Rev. E, 65, 026139 (2002)

    Article  Google Scholar 

  15. Lago-Fernandez, L. F., Huerta, R., Corbacho, et al.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett., 84, 2758–2761 (2000)

    Article  Google Scholar 

  16. Olfati-Saber, R.: Ultrafast consensus in the small-world networks. In: Proceedings of American Control Conference, 2005, 2371–2378

  17. Wang, X. F., Chen G.: Synchronization in small-world dynamical networks. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12, 187–192 (2002)

    Article  Google Scholar 

  18. Gu, L., Zhang, X. D., Zhou, Q.: Consensus and synchronization problems on small-world networks. J. Math. Phys., 51(8), 082701 (2010)

    Google Scholar 

  19. Erdös, P., Rényi, A.: On the evolution of random graphs. Publication of Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61 (1960)

    MATH  Google Scholar 

  20. Bollobás, B.: Random Graphs, second edition, Cambridge University, Cambridge, 2001

    Book  MATH  Google Scholar 

  21. Janson, S., Luczak, T., Rucinski, A.: Random Graphs, John Wiley, New York, 2000

    Book  MATH  Google Scholar 

  22. Alon, N., Milman, V. D.: λ 1, Isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B, 38, 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Berman, A., Zhang, X. D.: Lower bounds for the eigenvalues of Laplacian matrices. Linear Algebra Appl., 316, 13–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gu.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 10971137 and 11271256), National Basic Research Program of China 973 Program (Grant No. 2006CB805900) and the Grant of Science and Technology Commission of Shanghai Municipality (STCSM No. 09XD1402500)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, L., Huang, H.L. & Zhang, X.D. The clustering coefficient and the diameter of small-world networks. Acta. Math. Sin.-English Ser. 29, 199–208 (2013). https://doi.org/10.1007/s10114-012-0387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-0387-6

Keywords

MR(2000) Subject Classification