Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Intelligent data analysis approaches to churn as a business problem: a survey

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Globalization processes and market deregulation policies are rapidly changing the competitive environments of many economic sectors. The appearance of new competitors and technologies leads to an increase in competition and, with it, a growing preoccupation among service-providing companies with creating stronger customer bonds. In this context, anticipating the customer’s intention to abandon the provider, a phenomenon known as churn, becomes a competitive advantage. Such anticipation can be the result of the correct application of information-based knowledge extraction in the form of business analytics. In particular, the use of intelligent data analysis, or data mining, for the analysis of market surveyed information can be of great assistance to churn management. In this paper, we provide a detailed survey of recent applications of business analytics to churn, with a focus on computational intelligence methods. This is preceded by an in-depth discussion of churn within the context of customer continuity management. The survey is structured according to the stages identified as basic for the building of the predictive models of churn, as well as according to the different types of predictive methods employed and the business areas of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Through the increase in services used (up-selling); the increase in consumption or wallet share (cross-selling); the construction of stronger loyalty bonds; the proactive retention actions on customers who intend to leave the actual provider; the launch of new products and services (innovation) and/or the adjustment of commercial costs, giving each costumer as expected.

References

  1. Au WH, Chan KC, Yao X (2003) A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Trans Evolut Comput 7(6):532–545

    Article  Google Scholar 

  2. Baesens B, Verstraeten G, Van den Poel D, Egmont-Peterson M, Van Kenhove P, Vanthienen J (2004) Bayesian network classifiers for identifiying the slope of the customer lifecycle of long-life customers. Eur J Oper Res 156(2):508–523

    Article  MATH  Google Scholar 

  3. Behara RS, Fisher WW, Lemmink JG (2002) Modelling and evaluating service quality measurement using neural networks. Int J Oper Prod Manag 22(10):1162–1185

    Article  Google Scholar 

  4. Berg D (2007) Bankruptcy prediction by generalized additive models. Appl Stoch Models Bus Ind 23(2):129–143

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloemer JM, Brijis T, Vanhoof K, Swinnen G (2003) Comparing complete and partial classification for identifying customers at risk. Int J Res Mark 20(2):117–131

    Article  Google Scholar 

  6. Bose I, Chen X (2009) Quantitative models for direct marketing: a review from systems perspective. Eur J Oper Res 195(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  7. Bose I, Chen X (2015) Detecting the migration of mobile service customers using fuzzy clustering. Inf Manag 52(2):227–238

    Article  Google Scholar 

  8. Boser BE, Guyon IM, Vapnik V (1992) A training algorithm for optimal margin classifiers. In: Fifth annual workshop on computational learning theory, pp 114–152

  9. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  10. Buckinx W, Van den Poel D (2005) Customer base analysis: partial defection of behaviorally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268

    Article  MATH  Google Scholar 

  11. Burez J, Van den Poel D (2007) CRM at a pay-TV company: using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Syst Appl 32(2):277–288

    Article  Google Scholar 

  12. Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  13. Chen ZY, Fan ZP, Sun M (2012) A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur J Oper Res 223(2):461–472

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiang D, Wang Y, Lee S, Lin C (2003) Goal-oriented sequential pattern for network banking and churn analysis. Expert Syst Appl 25(3):293–302

    Article  Google Scholar 

  15. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  16. Coussement K, Van den Poel D (2008) Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327

    Article  Google Scholar 

  17. Coussement K, De Bock KW (2013) Customer churn prediction in the online gambling industry: the beneficial effect of ensemble learning. J Bus Res 66(9):1629–1636

    Article  Google Scholar 

  18. Crespo F, Weber R (2005) A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets Syst 150(2):267–284

    Article  MathSciNet  MATH  Google Scholar 

  19. Crone SF, Lessmann S, Stahlbock R (2006) The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing. Eur J Oper Res 173(3):781–800

    Article  MathSciNet  MATH  Google Scholar 

  20. Cronin JJ, Brady MK, Hule GT (2000) Assessing the dffects of quality, value, and customer satisfaction on customer behavioural intentions in service environments. J Retail 76(2):193–218

    Article  Google Scholar 

  21. Datta P, Masand B, Mani PR, Li B (2000) Automated cellular modelling and prediction on a large scale. Artif Intell Rev 14(6):485–502

    Article  MATH  Google Scholar 

  22. De Bock K, Coussement K, Van den Poel D (2010) Ensemble classification based on generalized additive models. Comput Stat Data Anal 54(6):1535–1546

    Article  MathSciNet  MATH  Google Scholar 

  23. De Bock K, Van den Poel D (2013) Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models. Expert Syst Appl 39(8):6816–6826

    Article  Google Scholar 

  24. Dy J, Brodley C (2004) Feature selection for unsupervised learning. J Mach Learn Res 5(1):845–889

    MathSciNet  MATH  Google Scholar 

  25. Farquad MAH, Ravi V, Raju SB (2014) Churn prediction using comprehensible support vector machine: an analytical CRM application. Appl Soft Comput 19:31–40

    Article  Google Scholar 

  26. Fayyad U, Piatetski-Shapiro G, Smith P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54

    Google Scholar 

  27. Ferreira JB, Vellasco M, Pacheco MA, Barbosa CH (2004) Data mining techniques on the evaluation of wireless churn. In: Proceedings of the 12th European symposium on artificial neural networks (ESANN), pp 483–488

  28. García DL, Vellido A, Nebot À (2007) Customer continuity management as a foundation for churn data mining. Technical Report LSI-07-2-R Universitat Politécnica de Catalunya, Barcelona, Spain

  29. Gilbert R (1989) Mobility barriers and the value of incumbency. Handb Ind Organ 1:475–535

    Article  Google Scholar 

  30. Glady N, Baesens B, Croux C (2008) Modeling churn using customer lifetime value. Eur J Oper Res 197(1):402–411

    Article  MATH  Google Scholar 

  31. Gonçalves Curty R, Zhang P (2011) Social commerce: looking back and forward. Proc Am Soc Inf Sci Technol 48(1):1–10

    Article  Google Scholar 

  32. Gür-Ali Ö, Aritürk U (2014) Dynamic churn prediction framework with more effective use of rare event data: The case of private banking. Expert Syst Appl 41(17):7889–7903

    Article  Google Scholar 

  33. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(1):1157–1182

    MATH  Google Scholar 

  34. Hadden J (2008) A customer profiling methodology for churn prediction. Ph.D. Thesis, Cranfield University, UK

  35. Hadden J, Tiwari A, Roy R, Ruta D (2007) Computer-assisted customer churn management: state-of-the-art and future trends. Comput Oper Res 34(10):2902–2917

    Article  MATH  Google Scholar 

  36. Haenlein M, Kaplan AM, Schoder D (2006) Valuing the real option of abandoning unprofitable customers when calculating customer lifetime value. J Mark 70(3):5–20

    Article  Google Scholar 

  37. Haenlein M, Kaplan AM (2012) The impact of unprofitable customer abandonment on current customers exit, voice, and loyalty intentions: an empirical analysis. J Serv Mark 26(6):458–470

    Article  Google Scholar 

  38. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  39. Ho Ha S, Min Bae S, Chan Park S (2002) Customers’ time-variant purchase behaviour and corresponding marketing strategies: an online retailer’s case. Comput Ind Eng 43(4):801–820

    Article  Google Scholar 

  40. Hsieh N (2004) An integrated data mining and behavioural scoring model for analysing bank customers. Expert Syst Appl 27(4):623–633

    Article  Google Scholar 

  41. Hsu C, Chang C, Lin C (2008) A practical guide to support vector classification. Technical Report. Department of Computer Science, National Taiwan University, Taiwan

  42. Huang BQ, Kechadi MT, Buckley B (2009) Customer churn prediction for broadband internet services. In: Pedersen TB, Mohania MK, Tjoa M (eds) Proceedings of DaWaK 2009, vol 5691., Lecture Notes in Computer ScienceSpringer, Berlin, pp 229–243

    Google Scholar 

  43. Huang BQ, Kechadi MT, Buckley B (2012) Customer churn prediction in telecommunications. Expert Syst Appl 39(1):1414–1425

    Article  Google Scholar 

  44. Huang Y, Kechadi T (2013) An effective hybrid learning system for telecommunication churn prediction. Expert Syst Appl 40(14):5635–5647

    Article  Google Scholar 

  45. Hung SY, Yen DC, Wang HY (2006) Applying data mining to telecom churn management. Expert Syst Appl 31(3):512–524

    Article  Google Scholar 

  46. Hwang H, Jung T, Suh E (2004) An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Syst Appl 26(2):181–188

    Article  Google Scholar 

  47. Jenamani M, Mohapatra PK, Ghose S (2003) A stochastic model of e-customer behaviour. Electron Commerce Res Appl 2(1):81–94

    Article  Google Scholar 

  48. Jones MA, Mothersbaugh DL, Beatty SE (2000) Switching barriers and repurchase intentions in services. J Retail 70(2):259–270

    Article  Google Scholar 

  49. Jones MA, Mothersbaugh DL, Beatty SE (2002) Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes. J Bus Res 55(6):441–450

    Article  Google Scholar 

  50. Jonker J, Piersma N, Van den Poel D (2004) Joint optimization of customer segmentation and marketing policy to maximize long-term profitability. Expert Syst Appl 27(2):159–168

    Article  Google Scholar 

  51. Keramati A, Jafari-Marandi R, Aliannejadi M, Ahmadian I, Mozaffari M, Abbasi U (2014) Improved churn prediction in telecommunication industry using datamining techniques. Appl Soft Comput 24:994–1012

    Article  Google Scholar 

  52. Kim K, Jun CH, Lee J (2014) Improved churn prediction in telecommunication industry by analyzing a large network. Expert Syst Appl 41(15):6575–6584

    Article  Google Scholar 

  53. Kim M-K, Park M-Ch, Jeong D-H (2004) The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services. Telecommun Policy 28(2):145–159

    Article  Google Scholar 

  54. Kim H, Yoon C (2004) Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommun Policy 28(9–10):751–765

    Article  Google Scholar 

  55. Kisioglu P, Topcu YL (2010) Applying Bayesian belief network approach to customer churn analysis: a case study on the telecom industry of Turkey. Expert Syst Appl 38(6):7151–7157

    Article  Google Scholar 

  56. Klemperer P (1987) Markets with consumer switching cost. Q J Econ 102(2):375–394

    Article  MathSciNet  Google Scholar 

  57. Kumar D, Ravi V (2008) Predicting credit card customer churn in banks using data mining. Int J Data Anal Tech Strateg 1(1):4–28

    Article  Google Scholar 

  58. Langley P (2000) Crafting papers on machine learning. In: Proceedings of the 17th international conference on machine learning (ICML 2000) Stanford University, pp 1207–1216

  59. Larivière B, Van den Poel D (2005) Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Syst Appl 29(2):472–484

    Article  Google Scholar 

  60. Lee TS, Chiu CC, Chou YC, Lu CJ (2006) Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput Stat Data Anal 50(4):1113–1130

    Article  MathSciNet  MATH  Google Scholar 

  61. Lemmens A, Croux C (2006) Bagging and boosting classification trees to predict churn. J Mark Res 43(2):276–286

    Article  Google Scholar 

  62. Lessmann S, Voß S (2009) A reference model for customer-centric data mining with support vector machines. Eur J Oper Res 199(1):520–530

    Article  MathSciNet  MATH  Google Scholar 

  63. Lima E (2009) Domain knowledge integration in data mining for churn and customer lifetime value modelling: new approaches and applications. Ph.D. Thesis, University of Southampton, Faculty of Law, Arts and Social Sciences, Southampton, UK

  64. Lima E, Mues C, Baesens B (2010) Monitoring and backtesting churn models. Expert Syst Appl 38(1):975–982

    Article  Google Scholar 

  65. Lisboa PJG, Edisbury B, Vellido A (eds) (2000) Business applications of neural networks. World Scientific Publishing Co, Singapore

    Google Scholar 

  66. Liu H, Motoda H (2007) Computational methods of feature selection. Chapman and Hall/CRC, Data Mining and Knowledge Discovery Series

    MATH  Google Scholar 

  67. Liu D, Shih Y (2005) Integrating AHP and data mining for product recommendation based on customer lifetime value. Inf Manag 42(3):387–400

    Article  Google Scholar 

  68. Liu D, Shih Y (2005) Hybrid approaches to product recommendation based on customer lifetime value and purchase references. J Syst Softw 77(2):181–191

    Article  Google Scholar 

  69. Madden G, Savage SJ, Coble-Neal G (1999) Subscriber churn in the Australian ISP market. Inf Econ Policy 11:195–207

    Article  Google Scholar 

  70. Miguéis VL, Camanho A, Falcão e Cunha J (2013) Customer attrition in retailing: an application of multivariate adaptive regression splines. Expert Syst Appl 40(16):6225–6232

    Article  Google Scholar 

  71. Mihelis G, Grigoroudis E, Siskos Y, Politis Y, Malandrakis Y (2001) Customer satisfaction measurement in the private bank sector. Eur J Oper Res 130(2):347–360

    Article  MATH  Google Scholar 

  72. Mozer MC, Wolniewicz R, Grimes DB, Johnson E, Kaushansky H (2000) Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. IEEE Trans Neural Netw 11(3):690–696

    Article  Google Scholar 

  73. Neslin S, Gupta S, Kamakura W, Lu J, Mason C (2004) Defection detection: improving predictive accuracy of customer churn models. Technical Report. Tuck School of Business, Dartmouth College

  74. Ng K, Liu H (2000) Customer retention via data mining. Artif Intell Rev 16(4):569–590

    Article  MATH  Google Scholar 

  75. Nie G, Zhang L, Li X, Shi Y (2006) The analysis on the customers churn of charge email based on data mining. Proceedings of the sixth IEEE international conference on data mining (ICDM). Springer, Berlin, pp 843–847

    Google Scholar 

  76. Nie G, Wang G, Zhang P, Tian Y, Shi Y (2009) Finding the hidden pattern of credit card holder’s churn: a case of China. Computational Science–ICCS 2009. Springer, Berlin, pp 561–569

    Chapter  Google Scholar 

  77. Nie G, Rowe W, Zhang L, Tian Y, Shi Y (2011) Credit card churn forecasting by logistic regression and decision tree. Expert Syst Appl 38(12):15273–15285

    Article  Google Scholar 

  78. Osei-Bryson K-M (2004) Evaluation of decision trees: a multi criteria approach. Comput Oper Res 31(11):1933–1945

    Article  MATH  Google Scholar 

  79. Pal SK, Ghosh A (2004) Soft computing data mining. Inf Sci 163(1–3):5–12

    Article  Google Scholar 

  80. Patterson MP, Smith T (2003) A cross-cultural study of switching barriers and propensity to stay with service providers. J Retail 79(2):107–120

    Article  Google Scholar 

  81. Pfeifer PE, Carraway RL (2000) Modeling customer relationships as Markov chains. J Interact Mark 14(2):43–55

    Article  Google Scholar 

  82. Prinzie A, Van den Poel D (2006) Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models. Eur J Oper Res 170(3):710–734

    Article  MATH  Google Scholar 

  83. Provost P, Fawcett T, Kohavi R (2000) The case against accuracy estimation for comparing induction algorithms. Proceedings of the 15th international conference on machine learning (ICML 1998). Morgan Kaufman, San Francisco, pp 445–453

    Google Scholar 

  84. Ranaweera Ch, Neely A (2003) Some moderating effects on the service quality-customer relation link. Int J Oper Prod Manag 23(2):230–248

    Article  Google Scholar 

  85. Rygielski J, Wang J, Yen DC (2002) Data mining techniques for customer relationship management. Technol Soc 24(4):483–502

    Article  Google Scholar 

  86. Shearer C (2000) The CRISP-DM model: the new blueprint for data mining. J Data Warehous 5(4):13–22

    Google Scholar 

  87. Shin HW, Sohn SY (2004) Segmentation of stock trading customers according to potential value. Expert Syst Appl 27(1):27–33

    Article  Google Scholar 

  88. Slater SF, Narver JC (2000) Intelligence generation and superior customer value. J Acad Mark Sci 28(1):120–127

    Article  Google Scholar 

  89. Slotnick SA, Sobel MJ (2005) Manufacturing lead-time rules: customer retention versus tardiness costs. Eur J Oper Res 163(3):825–856

    Article  MATH  Google Scholar 

  90. Sun Z, Bebis G, Miller R (2004) Object detection using feature subset selection. Pattern Recognit 37(11):2165–2176

    Article  Google Scholar 

  91. Suryadi K, Gumilang S (2008) Actionable decision model in customer churn monitoring based on support vector machines technique. In: Proceedings of the 9th Asia Pacific industrial engineering and management systems conference, Bandung, Indonesia

  92. Tiwari A, Hadden J, Turner C (2010) A new neural network based customer profiling methodology for churn prediction. Proceedings of the ICCSA 2010, vol IV. Springer, Berlin, pp 358–369

    Google Scholar 

  93. Tsai CF, Lu YH (2009) Customer churn prediction by hybrid neural networks. Expert Syst Appl 36(10):12547–12553

    Article  Google Scholar 

  94. Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KCh (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9

    Article  Google Scholar 

  95. Van den Poel D (2003) Predicting mail-order repeat buying: which variables matter? Tijdschrift voor Economie and Management 48(3):371–403

    MathSciNet  Google Scholar 

  96. Van den Poel D, Laraviére B (2004) Customer attrition analysis for financial services using proportional hazard models. Eur J Oper Res 157(1):196–217

    Article  MATH  Google Scholar 

  97. Vellido A, Lisboa PJG, Vaughan J (1999) Neural networks in business: a survey of applications (1992–1998). Expert Syst Appl 17(1):51–70

    Article  Google Scholar 

  98. Verbeke W, Dejaeger K, Martens D, Hur J, Baesens B (2011) New insights into churn prediction in the telecommunication sector: a profit driven data mining approach. Eur J Oper Res 218(1):211–219

    Article  Google Scholar 

  99. Verbeke W, Martens D, Baesens B (2014) Social network analysis for customer churn prediction. Appl Soft Comput 14(part C):431–446

    Article  Google Scholar 

  100. Verbraken T, Verbeke W, Baesens B (2014) Profit optimizing customer churn prediction with Bayesian network classifiers. Intell Data Anal 18(1):3–24

    Google Scholar 

  101. Verhoef PC, Donkers B (2001) Predicting customer potential vualue, an application in the insurance industry. Decis Support Syst 32(2):189–199

    Article  Google Scholar 

  102. Verhoef PC, Spring PN, Hoekstra JC, Leeflang PS (2003) The commercial use of segmentation and predictive modelling techniques for database marketing in the Netherlands. Decis Support Syst 34(4):471–481

    Article  Google Scholar 

  103. Wang G, Liu L, Peng Y, Nie G, Kou G, Shi Y (2010) Predicting credit card holder churn in banks of China using data mining and MCDM. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp 215–218

  104. Wei CP, Chiu LT (2002) Turning telecommunications call details to churn prediction: a data mining approach. Expert Syst Appl 23(2):103–112

    Article  Google Scholar 

  105. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufman, San Francisco

    MATH  Google Scholar 

  106. Wu D (2009) Supplier selection: a hybrid model using DEA, decision tree and neural network. Expert Syst Appl 36(5):9105–9112

    Article  Google Scholar 

  107. Xiao J, Xiao Y, Huang A, Liu D, Wang S (2015) Feature-selection-based dynamic transfer ensemble model for customer churn prediction. Knowl Inf Syst 43(1):29–51

    Article  Google Scholar 

  108. Yan L, Wolniewicz RH, Dodier R (2004) Predicting customer behaviour in telecommunications. IEEE Intell Syst 19(2):50–58

    Article  Google Scholar 

  109. Yeswanth V, Vimal Raj V, Saravanan M (2011) Evolutionary churn prediction in mobile networks using hybrid learning. In: Proceedings of the 24th International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp 471–476

  110. Zhao Y, Li B, Li X, Liu W, Ren S (2005) Customer churn prediction using improved one-class support vector machine. In: Li X, Wang S, Yang-Dong Z (eds) Advanced data mining and applications. Lecture Notes in Computer Science, vol 3584. Springer, Berlin, pp 300–306

Download references

Acknowledgments

We thank anonymous reviewers for their useful comments and suggestions. This research was partially supported by Spanish MINECO TIN2012-31377 research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vellido.

Appendix

Appendix

The detailed tables of publications are reported in this appendix, following the description in Sect. 3.2.

Table 2 Literature on abandonment prediction modelling, listed in chronological order and corresponding to the use of standard methods
Table 3 References on abandonment prediction modelling, listed in chronological order and for the use of CI methods
Table 4 References on abandonment prediction modelling, listed in chronological order and concerning the use of alternative methods
Table 5 References on abandonment prediction modelling, listed in chronological order for the telecommunications application area
Table 6 References on abandonment prediction modelling, listed in chronological order (2001–2015) for the Banking and Financial Services field
Table 7 References on abandonment prediction modelling, listed in chronological order for the Retail, Mail and Delivery Services and Other fields of application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, D.L., Nebot, À. & Vellido, A. Intelligent data analysis approaches to churn as a business problem: a survey. Knowl Inf Syst 51, 719–774 (2017). https://doi.org/10.1007/s10115-016-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-016-0995-z

Keywords