Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

From sets of good redescriptions to good sets of redescriptions

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Redescription mining aims at finding pairs of queries over data variables that describe roughly the same set of observations. These redescriptions can be used to obtain different views on the same set of entities. So far, redescription mining methods have aimed at listing all redescriptions supported by the data. Such an approach can result in many redundant redescriptions and hinder the user’s ability to understand the overall characteristics of the data. In this work, we present an approach to identify and remove the redundant redescriptions, that is, an approach to move from a set of good redescriptions to a good set of redescriptions. We measure the redundancy of a redescription using a framework inspired by the concept of subjective interestingness based on maximum entropy distributions as proposed by De Bie (Data Min Knowl Discov 23(3):407–446, 2011). Redescriptions, however, generate specific requirements on the framework, and our solution differs significantly from the existing ones. Notably, our approach can handle disjunctions and conjunctions in the queries, whereas the existing approaches are limited only to conjunctive queries. Our framework can also handle data with Boolean, nominal, or real-valued data, possibly containing missing values, making it applicable to a wide variety of data sets. Our experiments show that our framework can efficiently reduce the redundancy even on large data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The present work is an extended version of our earlier conference publication [21].

  2. The Dirac delta, which is the continuous equivalent of the Kronecker delta, is a generalised function that assumes an infinite mass when its argument is zero, in our case effectively ensuring that only the case of \({{\varvec{r}}}={{\varvec{r}}}_\rho \) is possible.

  3. The source code is available at http://siren.mpi-inf.mpg.de/max-ent/.

  4. http://siren.gforge.inria.fr, accessed 13 December 2017.

  5. http://www.informatik.uni-trier.de/~ley/db/, accessed 13 December 2017.

  6. https://archive.ics.uci.edu/ml/datasets/Covertype, accessed 13 December 2017.

  7. http://intersci.ss.uci.edu/wiki/index.php/Ethnographic_Atlas#Rdata_format_version_of_Ethnographic_Atlas, accessed 13 December 2017.

References

  1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec 27(2):94–105

    Article  Google Scholar 

  2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of 20th international conference on very large data bases (VLDB’94), pp 487–499

  3. Barber D (2012) Bayesian reasoning and machine learning. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Berger AL, Pietra VJD, Pietra SAD (1996) A maximum entropy approach to natural language processing. Comput Linguist 22(1):39–71

    Google Scholar 

  5. Bickel S, Scheffer T (2004) Multi-view clustering. In: Proceedings of the 4th IEEE international conference on data mining (ICDM’04), pp 19–26

  6. Burden RL, Faires JD (2011) Numerical analysis, 9th edn. Brooks/Cole, Boston

    MATH  Google Scholar 

  7. De Bie T (2011) Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min Knowl Discov 23(3):407–446

    Article  MathSciNet  MATH  Google Scholar 

  8. Galbrun E, Kimmig A (2014) Finding relational redescriptions. Mach Learn 96(3):225–248

    Article  MathSciNet  MATH  Google Scholar 

  9. Galbrun E, Miettinen P (2012a) From black and white to full color: extending redescription mining outside the boolean world. Stat Anal Data Min 5(4):284–303

    Article  MathSciNet  Google Scholar 

  10. Galbrun E, Miettinen P (2012b) Siren: an interactive tool for mining and visualizing geospatial redescriptions. In: Proceedings of the 18th ACM SIGKDD International conference on knowledge discovery and data mining (KDD’12), pp 1544–1547

  11. Galbrun E, Miettinen P (2014) Interactive redescription mining. In: Proceedings of the 2016 international conference on management of data (SIGMOD’14), pp 1079–1082

  12. Galbrun E, Miettinen P (2018) Redescription mining. Springer, Cham

    Google Scholar 

  13. Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: algorithms for redescription mining. In: Proceedings of the 8th SIAM international conference on data mining (SDM’08), pp 334–345

  14. Gray JP (1999) A corrected ethnographic atlas. World Cultures 10(1):24–85

    MathSciNet  Google Scholar 

  15. Grove AJ, Halpern JY, Koller D (1992) Random worlds and maximum entropy. In: Proceedings of the 7th annual IEEE symposium on logic in computer science (LICS’92), pp 22–33

  16. Hijmans RJ, Cameron SE, Parra LJ, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  17. Jaroszewicz S, Simovici DA (2002) Pruning redundant association rules using maximum entropy principle. In: Proceedings of the 6th Pacific–Asia conference on advances in knowledge discovery and data mining (PAKDD’02), pp 135–147

  18. Jaynes E (1982) On the rationale of maximum-entropy methods. Proc IEEE 70(9):939–952

    Article  Google Scholar 

  19. Jaynes ET (2003) Probability theory: the logic of science, vol 10. Cambridge University Press, Cambridge, p 33

    Book  Google Scholar 

  20. Jensen FV, Jensen F (1994) Optimal junction trees. In: Proceedings of the 10th annual conference on uncertainty in artificial intelligence (UAI’94), pp 360–366

  21. Kalofolias J, Galbrun E, Miettinen P (2016) From sets of good redescriptions to good sets of redescriptions. In: Proceedings of the 16th IEEE international conference on data mining (ICDM’16), pp 211–220

  22. Kontonasios K-N, De Bie T (2012) Formalizing complex prior information to quantify subjective interestingness of frequent pattern sets. In: Proceedings of the 11th international symposium on advances in intelligent data analysis (IDA’12), pp 161–171

  23. Kontonasios K-N, De Bie T (2015) Subjectively interesting alternative clusterings. Mach Learn 98(1–2):31–56

    Article  MathSciNet  MATH  Google Scholar 

  24. Kontonasios K-N, Vreeken J, De Bie T (2011) Maximum entropy modelling for assessing results on real-valued data. In: Proceedings of the 11th IEEE international conference on data mining (ICDM’1), pp 350–359

  25. Kontonasios K-N, Vreeken J, De Bie T (2013) Maximum entropy models for iteratively identifying subjectively interesting structure in real-valued data. In: Proceedings of the 2013 European conference on machine learning and principles and practice of knowledge discovery in databases (ECML-PKDD’13), pp 256–271

  26. Kröger P (2009) Subspace clustering techniques. In: Liu L, Özsu M T (eds) Encyclopedia of database systems. Springer, Berlin, pp 2873–2875

    Google Scholar 

  27. Mampaey M, Tatti N, Vreeken J (2011) Tell me what i need to know: succinctly summarizing data with itemsets. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’11), pp 573–581

  28. Mampaey M, Vreeken J, Tatti N (2012) Summarizing data succinctly with the most informative itemsets. ACM Trans Knowl Discov Data 6(4):16:1–16:42

    Article  Google Scholar 

  29. Mannila H, Pavlov D, Smyth P (1999) Prediction with local patterns using cross-entropy. In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’99), pp 357–361

  30. Mihelčić M, Šmuc T (2016) InterSet: interactive redescription set exploration. In: Proceedings of the 19th international conference on discovery science (DS’16), pp 35–50

  31. Mitchell-Jones A J et al (1999) The atlas of European mammals. Academic Press, New York

    Google Scholar 

  32. Murdock GP (1967) Ethnographic atlas: a summary. Ethnology 6(2):109–236

    Article  Google Scholar 

  33. Novak PK, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J Mach Learn Res 10:377–403

    MATH  Google Scholar 

  34. Parida L, Ramakrishnan N (2005) Redescription mining: structure theory and algorithms. In: Proceedings of the 20th national conference on artificial intelligence and the 7th innovative applications of artificial intelligence conference (AAAI’05), pp 837–844

  35. Pavlov D, Mannila H, Smyth P (2003) Beyond independence: probabilistic models for query approximation on binary transaction data. IEEE Trans Knowl Data Eng 15(6):1409–1421

    Article  Google Scholar 

  36. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

    Article  Google Scholar 

  37. Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (2004) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’04), pp 266–275

  38. Rasch G (1960) Probabilistic models for some intelligence and achievement tests. Danish Institute for Educational Research, Copenhagen

    Google Scholar 

  39. Tatti N (2006) Computational complexity of queries based on itemsets. Inf Process Lett 98(5):183–187

    Article  MathSciNet  MATH  Google Scholar 

  40. Tatti N (2008) Maximum entropy based significance of itemsets. Knowl Inf Syst 17(1):57–77

    Article  Google Scholar 

  41. Tatti N, Vreeken J (2011) Comparing apples and oranges. In: Joint european conference on machine learning and knowledge discovery in databases, Springer, pp 398–413

  42. van Leeuwen M, Galbrun E (2015) Association discovery in two-view data. IEEE Trans Knowl Data Eng 27(12):3190–3202

    Article  Google Scholar 

  43. Vreeken J, van Leeuwen M (2011) KRIMP: mining itemsets that compress. Data Min Knowl Disc 23(1):169–214

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang C, Parthasarathy S (2006) Summarizing itemset patterns using probabilistic models. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’06), pp 730–735

  45. Wu H, Vreeken J, Tatti N, Ramakrishnan N (2014) Uncovering the plot: detecting surprising coalitions of entities in multi-relational schemas. Data Min Knowl Discov 28(5–6):1398–1428

    Article  MathSciNet  Google Scholar 

  46. Zaki MJ, Ramakrishnan N (2005) Reasoning about sets using redescription mining. In: Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’05), pp 364–373

  47. Zinchenko T, Galbrun E, Miettinen P (2015) Mining predictive redescriptions with trees. In: IEEE International conference on data mining workshops, pp 1672–1675

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Kalofolias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalofolias, J., Galbrun, E. & Miettinen, P. From sets of good redescriptions to good sets of redescriptions. Knowl Inf Syst 57, 21–54 (2018). https://doi.org/10.1007/s10115-017-1149-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1149-7

Keywords