Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Polymerization of 1,3-Butadiene with Catalysts Based on Cobalt Dichloride Complexes with Aminophosphines: Switching the Regioselectivity by Varying the MAO/Co Molar Ratio

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Several novel cobalt dichloride complexes with amino-phosphine bidentate ligands were synthesized and characterized. For some of them single crystals were obtained and their molecular structure was determined by X-ray diffraction method. All the complexes were then used in combination with MAO for the polymerization of 1,3-butadiene, obtaining polymers with different structures (i.e., predominantly 1,2 or cis-1,4) mainly depending on the type of ligand and on the MAO/Co molar ratio. The behavior of these novel catalysts was compared with that exhibited, in the polymerization of the same monomer, by the systems CoCl2(PR3)2-MAO and CoCl2(PRPh2)2-MAO (R = alkyl or cycloalkyl group), and by the systems based on cobalt dichloride complexes with various bi- and tridentate ligands (e.g., diphosphines, bis-imines, pyridyl-imines, bis-iminopyridines). The comparison between the different systems allowed us to make some clarity about the actual and effective role played by the various types of ligands in the polymerization of conjugated dienes with catalytic systems CoCl2(L)-MAO, in which L = mono-, bi-, or tri-dentate ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gong, D.; Ying, W.; Zhao, J.; Li, W.; Xu, Y.; Luo, Y.; Zhang, X.; Capacchione, C.; Grassi, A. Controlling external diphenylcyclohexylphosphine feeding to achieve cis-1,4-syn-1,2 sequence controlled polybutadienes via cobalt catalyzed 1,3-butadiene polymerization. J. Catal. 2019, 377, 367–377.

    Article  CAS  Google Scholar 

  2. Wang, F.; Liu, H.; Hub, Y.; Zhang, X. Influence of imine-carbon substituent in 6-bromo-2-iminopyridine-based cobalt(II) complexes on 1,3-butadiene polymerization. Polym. Int. 2019, 68, 1484–1491.

    Article  CAS  Google Scholar 

  3. Li, W.; Zhao, J.; Zhang, X.; Gong, D. Capability of PN3-type cobalt complexes toward selective (co-) polymerization of myrcene, butadiene, and isoprene: access to biosourced polymers. Ind. Eng. Chem. Res. 2019, 58, 2792–2800.

    Article  CAS  Google Scholar 

  4. Zhang, X.; Zhu, G.; Mahmood, Q.; Zhao, M.; Wang, L.; Jing, C.; Wang, X.; Wang, Q. Iminoimidazole-based Co(II) and Fe(II) complexes: syntheses, characterization, and catalytic behaviors for isoprene polymerization. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 767–775.

    Article  ADS  CAS  Google Scholar 

  5. Fang, L.; Zhao, W.; Han, C.; Liu, H.; Hu. Y.; Zhang, X. Isoprene polymerization with pyrazolylimine cobalt(II) complexes: manipulation of 3,4-selectivities by ligand design and use of triphenylphosphine. Eur. J. Inorg. Chem. 2019, 609–616.

  6. Fang, L., Zhao, W.P.; Hanc, C.; Zhang, C. Y.; Liu, H.; Hu, Y-M.; Zhang, X. Q. 1,3-Butadiene polymerizations catalyzed by cobalt and iron dichloride complexes bearing pyrazolylimine ligands. Chinese J. Polym. Sci. 2019, 37, 462–470.

    Article  CAS  Google Scholar 

  7. Dong, B.; Liu, H.; Peng, C.; Zhao, W.; Zheng, W.; Zhang, C.; Bi, J.; Hu, Y. Zhang, X. Synthesis of stereoblock polybutadiene possessing cis-1,4 and syndiotactic-1, T 2 segments by iminopyridine cobalt complex-based catalyst through one-pot polymerization process. Eur. Polym. J. 2018, 108, 116–123.

    Article  CAS  Google Scholar 

  8. Jia, X.; Zhang, X.; Gong, D. 1,2 Enriched polymerization of isoprene by cobalt complex carrying aminophosphory fused (PN3) ligand. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 2286–2293.

    Article  ADS  CAS  Google Scholar 

  9. Liu, H:; Zhuang, R.; Dong, B.; Wang, F.; Hua, Y. M.; Zhang, X. Q. Mono- and binuclear cobalt(II) complexes supported by quinoline-2-imidate ligands: synthesis, characterization, and 1,3-butadiene polymerization. Chinese J. Polym. Sci. 2018, 36, 943–952.

    Article  CAS  Google Scholar 

  10. Zhao, J.; Chen, H.; Li, W.; Jia, X.; Zhang, X.; Gong, D. Polymerization of isoprene by aminophosphine(ory)-fused bipyridine cobalt complexes: precise control of molecular weight and cis-1,4-alt-3,4 sequence. Inorg. Chem. 2018, 57, 4088–4097.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H.; Pan, W.; Huang, K-W.; Zhang, X.; Gong, D. Controlled polymerization of isoprene promoted by a type of hemilabile XvPN3 (X = O, S) ligand supported cobalt(II) complexes: the role of a hemilabile donor on the level of control. Polym. Chem. 2017, 8, 1805–1814.

    Article  CAS  Google Scholar 

  12. Pan, W.; Chen, H.; Mu, J.; Li, W.; Jiang, F.; Weng, G.; Hu, Y.; Gong, D.; Zhang, X. Synthesis of high crystalline syndiotactic 1,2-polybutadienes and study on their reinforcing effect on cis-1,4 polybutadiene. Polymer 2017, 111, 20–26.

    Article  CAS  Google Scholar 

  13. Wang, X.; Fan, L.; Huang, C.; Liang, T.; Guo, C. Y.; Sun, W. H: Highly cis-1,4 Selective polymerization of isoprene promoted by a-diimine cobalt(II) chlorides. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3609–3615.

    Article  ADS  CAS  Google Scholar 

  14. Liu, H.; Yang, S.; Wang, F.; Bai, C., Hu, Y. Zhang, X. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing pyridine-2-imidate ligands. Chinese J. Polym. Sci. 2016, 34, 1060–1069.

    Article  CAS  Google Scholar 

  15. Guo, L.; Jing, X.; Xiong, S.; Liu, W.; Liu, Y.; Liu, Z., Chen, C. Influences of alkyl and aryl substituents on iminopyridine Fe(II)- and Co(II)-catalyzed isoprene polymerization. Polymers 2016, 8, 389.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dai, Q.; Jia, X.; Yang, F.; Bai, C., Hu, Y.; Zhang, X. Iminopyridine-based cobalt(II) and nickel(II) complexes: synthesis, characterization, and their catalytic behaviors for 1,3-butadiene polymerization. Polymers 2016, 8, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alnajrani, M. N.; Alshmimri, S. A.; Alsager, O. A. Alpha and beta diimine cobalt complexes in isoprene polymerization: a comparative study. RSC Adv. 2016, 6, 113803–113814.

    Article  ADS  CAS  Google Scholar 

  18. Lv, S.; Jie, S.; Li, B. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by bis{[2-(4,5-diphenylimidazolyl) phenylimino]phenolate} cobalt(II) complexes. J. Organomet. Chem. 2015, 799–800, 108–114.

    Article  Google Scholar 

  19. Liu, W.; Pan, W.; Wang, P.; Li, W.; Mu, J.; Weng, G.; Jia, X.; Gong, D.; Huang, K. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization. Inorg. Chim. Acta 2015, 436, 132–138.

    Article  CAS  Google Scholar 

  20. Gong, D.; Liu, W.; Pan, W.; Chen, T.; Jia, X.; Huang, K. Zhang, X. Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts. J. Mol. Cat. A: Chem. 2015, 406, 78–84.

    Article  CAS  Google Scholar 

  21. Guo, J.; Wang, B.; Bi, J.; Zhang, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, Z. Synthesis, characterization and 1,3-butadiene polymerization studies of cobalt dichloride complexes bearing pyridine bisoxazoline ligands. Polymer 2015, 59, 124–132

    Article  CAS  Google Scholar 

  22. Liu, H.; Wang, F.; Han, C.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt and nickel complexes supported by 2,6-bis(imidate)pyridyl ligands: synthesis, characterization, and 1,3-butadiene polymerization studies. Inorg. Chim. Acta 2015, 434, 135–142.

    Article  CAS  Google Scholar 

  23. Guo, J.; Zhang, C.; Bi, J.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: synthesis, characterization, and 1,3-butadiene polymerization behaviors. J. Organomet. Chem. 2015, 798, 414–421.

    Article  CAS  Google Scholar 

  24. Alnajrani, M. N.; Mair, F. S. The behaviour of b-triketimine cobalt complexes in the polymerization of isoprene. RSC Adv. 2015, 5, 46372–46385.

    Article  ADS  CAS  Google Scholar 

  25. Gong, D.; Wang, B.; Jia, X.; Zhang, X. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing alabile donor in a salen ligand. Dalton Trans. 2014, 43, 4169–4178.

    Article  CAS  PubMed  Google Scholar 

  26. Alnajrani, M. N.; Mair, F. S. Synthesis and characterization of β-triketimine cobalt complexes and their behavior in the polymeeriaztion of 1,3-butadiene. Dalton Trans. 2014, 43, 15727–15736.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, H.; Do, S.; Lee, S.; Kim, H.; Bae, C.; Jung, S.; Lee, B. Y.; Kwag, G. 1,3-Butadiene polymerization using binary, ternary and quaternary cobalt catalysts for high 1,4-trans polybutadiene. Polymer 2014, 55, 6483–6487.

    Article  CAS  Google Scholar 

  28. Liu, L.; Zhang, X.; Liu, H.; Zhang, X.; Sun, G.; Zhang, H. Synthesis of cationic cobalt(II) complexes and their efficiency as catalysts for the polymerization of 1,3-butadiene. Inorg. Chim. Acta 2014, 414, 8–14..

    Article  ADS  CAS  Google Scholar 

  29. Liu, H., Wang, F.; Liu, L., Dong, B.; Zhang, H.; Bai, C.; Hu, Y.; Zhang, X. Synthesis, characterization and 1,3-butadiene polymerization behaviors of three ONO, ONN, and NNN tridentate Co(II) complexes. Inorg. Chim. Acta 2014, 421, 284–291

    Article  CAS  Google Scholar 

  30. Wang, G.; Jiang, X.; Zhao, W.; Sun, W.; Yao, W.; He, A. Catalytic behavior of Co(II) complexes with 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine ligands on isoprene stereospecific polymerization. J. Appl. Polym. Sci. 2014, 39703.

  31. Liu, H.; Wang, F.; Jia, X.; Liu, L.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C., Hu, Y.; Zhang, Z. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand. J. Mol. Cat. A: Chem. 2014, 391, 25–35.

    Article  CAS  Google Scholar 

  32. Ai, P.; Chen, L.; Jie, S.; Li, B. Polymerization of 1,3-butadiene catalyzed by ion-pair cobalt complexes with (benzimidazolyl) pyridine alcohol ligands. J. Mol. Cat. A: Chem. 2013, 380, 1–9.

    Article  CAS  Google Scholar 

  33. Liu, H.; Jia, X.; Wang, F.; Dai, Q.; Wang, B.; Bi, J.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis of bis(N-arylcarboximidolylchloride)pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans. 2013, 42, 13723–13732.

    Article  CAS  PubMed  Google Scholar 

  34. He, A.; Wang, G.; Zhao, W.; Jiang, X.; Yao; Sun, W. High cis-1,4 polyisoprene or cis-1,4/3,4 binary polyisoprene synthesized using 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine cobalt(II) dichlorides. Polym. Int. 2013, 62, 1758–1766.

    Article  CAS  Google Scholar 

  35. Chen, L.; Ai, P.; Gu, J.; Jie, S.; Li, B. G. Stereospecific polymerization of 1,3-butadiene catalyzed by cobalt complexes bearing N-containing diphosphine PNP ligands. J. Organomet. Chem. 2012, 716, 55–61.

    Article  ADS  CAS  Google Scholar 

  36. Ai, P.; Chen, L.; Guo, Y.; Jie, S.; Li, B. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. J. Organomet. Chem. 2012, 705, 51–58.

    Article  CAS  Google Scholar 

  37. Gong, D.; Jia, X.; Wang, B.; Zhang, X.; Jiang, L. Synthesis, characterization, and butadiene polymerization of iron(III), iron(II) and cobalt(II) chlorides bearing 2,6-bis(2-benzimidazolyl)pyridyl or 2,6-bis(pyrazol)pyridine ligand. J. Organomet. Chem. 2012, 702, 10–18.

    Article  CAS  Google Scholar 

  38. Jie, S.; Ai, P.; Li, B. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxyben-zaldehydes. Dalton Trans. 2011, 40, 10975–10982.

    Article  CAS  PubMed  Google Scholar 

  39. Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. Synthesis, characterization and butadiene polymerization studies of cobalt(II) complexes bearing bisiminopyridine ligand. J. Organomet. Chem. 2011, 696, 1584–1590.

    Article  CAS  Google Scholar 

  40. Cariou, R.; Chirinos, J. J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Britovsek, G. J. P.; White, A. J. P. The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4 polymerisation of butadiene. Dalton Trans. 2010, 39, 9039–9045.

    Article  CAS  PubMed  Google Scholar 

  41. Appukuttan, V.; Zhang, L.; Young Ha, J.; Chandran, D.; Kottukkal Bahuleyan, B.; Ha, C.; Kim, I. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(II) complexes ligated by 2,6-bis(benzimidazolyl)pyridines. J. Mol. Cat. A: Chem. 2010, 355, 84–90.

    Article  Google Scholar 

  42. Gong, D.; Wang, B.; Bai, C.; Bi, J.; Wang, F.; Dong, W.; Zhang, X.; Jiang, L. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer 2009, 50, 6259–6264.

    Article  CAS  Google Scholar 

  43. Appukuttan, V.; Zhang, L.; Ha, C.; Kim, I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer 2009, 50, 1150–1158.

    Article  CAS  Google Scholar 

  44. Cariou, R.; Chirinos, J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Elsegood, M. R. J. 1,3-Butadiene polymerization by bis(benzimidazolyl)amine Metal Complexes: Remarkable microstructural control and a protocol for in-reactor blending of trans-1,4-, cis-1,4-, and cis-1,o-co-1,2-vinylpolybutadiene. Macromolecules 2009, 42, 1443–1444.

    Article  ADS  CAS  Google Scholar 

  45. Sung Kim, J.; Ha, C.; Kim, I. Highly stereospecific polymerizations of 1,3-butadiene with cobalt(II) pyridyl bis(imine) complexes. e-Polymers 2006, 027.

  46. Endo, K.; Kitagawa, T.; Nakatani, K. Effect of an alkyl substituted in salen ligands on 1,4-cis selectivity and molecular weight control in the polymerization of 1,3-butadiene with (salen)Co(II) complexes in combination with methylaluminoxane. J. Polym. Sci.: Part A: Polym. Chem. 2006, 44, 4088–4094.

    Article  ADS  CAS  Google Scholar 

  47. Fu, Y.; Tang, J.; Hua, J. Ultrahigh activity and broad temperature resistance of amine-imine cobalt precatalysts for butadiene polymerization. Dalton Trans. 2023, 52, 13146–13153.

    Article  CAS  PubMed  Google Scholar 

  48. Ricci, G.; Leone, G.; Zanchin, G.; Sommazzi, A.; Masi, F.; Forni, A. Cobalt dichloride complexes with pyridyl-phosphine bidentate ligands: synthesis, characterization, and behavior in the polymerization of 1,3-butadiene. Inorg. Chim. Acta 2023, 550, 121424.

    Article  CAS  Google Scholar 

  49. Ricci, G.; Leone, G.; Pierro, I.; Zanchin, G.; Forni, A. Novel cobalt dichloride complexes with hindered diphenylphosphine ligands: synthesis, characterization, and behavior in the polymerization of butadiene. Molecules 2019, 24, 2308.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ricci, G.; Leone, G. Polymerization of 1,3-butadiene with organometallic complexes-based catalysts. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, 3rd Ed., Cornils, B.; Hermann, W. A.; Beller, M.; Paciello, R. Eds, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2017, Vol. 1, pp.251.

    Google Scholar 

  51. Ricci, G.; Boccia, A. C.; Leone, G.; Forni, A. Novel allyl cobalt phosphine complexes: synthesis, characterization and behavior in the polymerization of allene and 1,3-dienes. Catalysts 2017, 7, 381.

    Article  Google Scholar 

  52. Ricci, G.; Leone, G. Recent progresses in the polymerization of butadiene over the last decade. Polyolefins J. 2014, 1, 43–60.

    Google Scholar 

  53. Boccia, A.C.; Leone, G.; Boglia, A.; Ricci, G. Novel stereoregular cis-1,4 and trans-1,2 poly(diene)s: synthesis, characterization, and mechanistic considerations. Polymer 2013, 54, 3492–3503.

    Article  CAS  Google Scholar 

  54. Ricci, G.; Leone, G.; Boglia, A.; Masi, F.; Sommazzi, A. In Cobalt: Characteristics, Compounds, and Applications, Lucas J. Vidmar Ed., Nova Science Publisher, Inc., USA, 2011, Chapter 2, pp. 39–81.

    Google Scholar 

  55. Ricci, G.; Leone, G.; Boglia, A.; Boccia, A.C.; Zetta, L. Cis-1,4-alt-3,4 polyisoprene: synthesis and characterization. Macromolecules 2009, 42, 9263–9267.

    Article  ADS  CAS  Google Scholar 

  56. Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization. Coord. Chem. Rev. 2010, 254, 661.

    Article  CAS  Google Scholar 

  57. Ricci, G.; Masi, F.; Boglia, A.; Sommazzi, A.; Ricci, M. in Advances in Organometallic Chemistry Research, Yamamoto, K. Ed., Nova Science Publisher, Inc., USA, 2007, 1.

    Google Scholar 

  58. Ricci, G.; Forni, A.; Boglia, A.; Motta, T. Synthesis, structure, and butadiene polymerization behavior of alkylphosphine cobalt (II) complexes. J. Mol. Catal. A: Chem. 2005, 226, 235–241.

    Article  CAS  Google Scholar 

  59. Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini, F. Synthesis and X-ray Structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used in association with MAO. Macromolecules 2005, 38, 1064–1070.

    Article  ADS  CAS  Google Scholar 

  60. Ricci, G.; Forni, A.; Boglia, A.; Sommazzi, A.; Masi, F. Synthesis, structure and butadiene polymerization behavior of CoCl2(PRxPh3−x)2 (R = methyl, ethyl, propyl, allyl, isopropyl, cyclohexyl; x = 1,2). Influence of the phosphorous ligand on polymerization stereoselectivity. J. Organomet. Chem. 2005, 690, 1845–1854.

    Article  CAS  Google Scholar 

  61. Jimenez, M. V.; Perez-Torrente, J. J.; Bartolome, M. I.; Oro, L. A. Convenient methods for the synthesis of a library of hemilabile phosphines synthesis. Synthesis-Stuttgart 2009, 11, 1916–1922.

    Article  Google Scholar 

  62. Chatt, J.; Shaw, B. L. Alkyls and aryls of transition metals. Part IV.* Cobalt(II) and iron(II) derivatives. J. Chem. Soc. 1961, 285–290.

  63. SADABS, Area detector absorption correction. Bruker AXS Inc., Madison, Wisconsin, USA.: University of Gottingen, Gottingen, Germany; 2012.

  64. Sheldrick G. M. A short history of SHELX. Acta Cryst. Sect. A 2008, A64, 112–122.

    Article  ADS  Google Scholar 

  65. Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8.

    Article  ADS  Google Scholar 

  66. Yang, L., Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964.

    Article  Google Scholar 

  67. Alonso, M.A.; Casares, J.A.; Espinet, P.; Soulantica, K.; Orpen, A.G.; Phetmung, H. Conformational preferences driven by the c-methyl substituent in chelated o-diphenylphosphmo-α-methyl-N,N-dimethylbenzylamine rhodium complexes. Inorg. Chem. 2003, 42, 3856–3864.

    Article  CAS  PubMed  Google Scholar 

  68. Porri, L.; Giarrusso, A. Conjugated Diene Polymerization. In Comprehensive Polymer Science, Eastmond, G.; Edwith, A.; Russo, S.; Sigwalt, P.; Eds.; Pergamon Press Ltd., Oxford, 1989; pp. 53–108.

    Google Scholar 

  69. Porri, L.; Giarrusso, A.; Ricci, G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci. 1991, 16, 405–441.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Fulvia Greco and Mr. Daniele Piovani for their assistance in NMR and GPC analyses of the polymers, respectively. A.F. thanks Pietro Colombo for support in X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Ricci.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3060_MOESM1_ESM.pdf

Polymerization of 1,3-Butadiene with Catalysts Based on Cobalt Dichloride Complexes with Aminophosphines: Switching the Regioselectivity by Varying the MAO/Co Molar Ratio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricci, G., Sommazzi, A., Masi, F. et al. Polymerization of 1,3-Butadiene with Catalysts Based on Cobalt Dichloride Complexes with Aminophosphines: Switching the Regioselectivity by Varying the MAO/Co Molar Ratio. Chin J Polym Sci 42, 501–510 (2024). https://doi.org/10.1007/s10118-023-3060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3060-x

Keywords