Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Assessing the benefits of digital twins in neurosurgery: a systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Digital twins are virtual replicas of their physical counterparts, and can assist in delivering personalized surgical care. This PRISMA guideline-based systematic review evaluates current literature addressing the effectiveness and role of digital twins in many stages of neurosurgical management. The aim of this review is to provide a high-quality analysis of relevant, randomized controlled trials and observational studies addressing the neurosurgical applicability of a variety of digital twin technologies. Using pre-specified criteria, we evaluated 25 randomized controlled trials and observational studies on the applications of digital twins, including navigation, robotics, and image-guided neurosurgeries. All 25 studies compared these technologies against usual surgical approaches. Risk of bias analyses using the Cochrane risk of bias tool for randomized trials (Rob 2) found “low” risk of bias in the majority of studies (23/25). Overall, this systematic review shows that digital twin applications have the potential to be more effective than conventional neurosurgical approaches when applied to brain and spinal surgery. Moreover, the application of these novel technologies may also lead to fewer post-operative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Not applicable.

References

  1. Mashour GA, Woodrum DT, Avidan MS (2015) Neurological complications of surgery and anaesthesia. Br J Anaesth 114(2):194–203. https://doi.org/10.1093/bja/aeu296

    Article  CAS  PubMed  Google Scholar 

  2. Budohoski KP, Ngerageza JG, Austard B, Fuller A, Galler R, Haglund M, Lett R, Lieberman IH, Mangat HS, March K, Olouch-Olunya D, Piquer J, Qureshi M, Santos MM, Schöller K, Shabani HK, Trivedi RA, Young P, Zubkov MR, Härtl R, Stieg PE (2018) Neurosurgery in East Africa: Innovations. World Neurosurg 113:436–452. https://doi.org/10.1016/j.wneu.2018.01.085

    Article  PubMed  Google Scholar 

  3. Singh R, Baby B, Suri A (2019) A virtual repository of neurosurgical instrumentation for neuroengineering research and collaboration. World Neurosurg 126:e84–e93. https://doi.org/10.1016/j.wneu.2019.01.192

    Article  PubMed  Google Scholar 

  4. Thomas NWD, Sinclair J (2015) Image-guided neurosurgery: history and current clinical applications. J Med Imaging Radiat Sci 46(3):331–342. https://doi.org/10.1016/j.jmir.2015.06.003

    Article  PubMed  Google Scholar 

  5. Graziano F, Bue EL, Scalia G, Umana GE, Lacopino DG, Tumbiolo S, Maugeri R, Nicoletti G (2021) Neurosurgical post-operative complications with incidental life-saving findings. Interdiscip Neurosurg 24. https://doi.org/10.1016/j.inat.2020.101088

  6. LandrielIbañez FA, Hem S, Ajler P, Vecchi E, Ciraolo C, Baccanelli M, Tramontano R, Knezevich F, Carrizo A (2011) A new classification of complications in neurosurgery. World Neurosurg 75(5–6):709–15. https://doi.org/10.1016/j.wneu.2010.11.010. discussion 604-11

    Article  Google Scholar 

  7. Panda NB, Mahajan S, Chauhan R (2019) Management of postoperative neurosurgical patients. 81Management of postoperative neurosurgical patients Panda et al. J J Neuroanaesthesiol Crit Care 6:80–86. https://doi.org/10.1055/s-0039-1689055

    Article  Google Scholar 

  8. Kamel Boulos MN, Zhang P (2021) Digital twins: from personalised medicine to precision public health. J Pers Med 11(8):745. https://doi.org/10.3390/jpm11080745

    Article  Google Scholar 

  9. Karas CS, Chiocca EA (2007) Neurosurgical robotics: a review of brain and spine applications. J Robot Surg 1(1):39–43. https://doi.org/10.1007/s11701-006-0006-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khoshnevisan A, Allahabadi NS (2012) Neuronavigation: principles, clinical applications and potential pitfalls. Iran J Psychiatry 7(2):97–103

    PubMed  PubMed Central  Google Scholar 

  11. Qureshi YA, Mohammadi B (2018) Robotic oesophago-gastric cancer surgery. Ann R Coll Surg Engl 100(6_sup):23–30. https://doi.org/10.1308/rcsann.supp1.23

    Article  Google Scholar 

  12. Gopalakrishnan S, Ganeshkumar P (2013) Systematic reviews and meta-analysis: understanding the best evidence in primary healthcare. J Family Med Prim Care 2(1):9–14. https://doi.org/10.4103/2249-4863.109934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bero L, Chartres N, Diong J, Fabbri A, Ghersi D, Lam J, Lau A, McDonald S, Mintzes B, Sutton P, Turton JL, Woodruff TJ (2018) The risk of bias in observational studies of exposures (ROBINS-E) tool: concerns arising from application to observational studies of exposures. Syst Rev 7(1):242. https://doi.org/10.1186/s13643-018-0915-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cho Y, Kim C, Kang B (2019) Risk of bias assessment of randomised controlled trials referenced in the 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care: a cross-sectional review. BMJ Open 9(5):e023725. https://doi.org/10.1136/bmjopen-2018-023725

    Article  PubMed  PubMed Central  Google Scholar 

  15. Borrella-Andrés S, Marqués-García I, Lucha-López MO, Fanlo-Mazas P, Hernández-Secorún M, Pérez-Bellmunt A, Tricás-Moreno JM, Hidalgo-García C (2021) Manual therapy as a management of cervical radiculopathy: a systematic review. Biomed Res Int 3(2021):9936981. https://doi.org/10.1155/2021/9936981

    Article  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10(1):89. https://doi.org/10.1186/s13643-021-01626-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T (2021) Digital twins for multiple sclerosis. Front Immunol 3(12):669811. https://doi.org/10.3389/fimmu.2021.669811

    Article  CAS  Google Scholar 

  18. Li FY, Chen XL, Xu BN (2016) Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Chronic Dis Transl Med 2(3):181–188. https://doi.org/10.1016/j.cdtm.2016.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Roessler K, Sommer B, Grummich P, Coras R, Kasper BS, Hamer HM, Blumcke I, Stefan H, Buchfelder M (2014) Improved resection in lesional temporal lobe epilepsy surgery using neuronavigation and intraoperative MR imaging: favourable long term surgical and seizure outcome in 88 consecutive cases. Seizure 23(3):201–207. https://doi.org/10.1016/j.seizure.2013.11.013

    Article  PubMed  Google Scholar 

  20. Xu Y, Wang H, Zhao Y, Feng X, Wu L, Lou L (2022) Stereoelectroencephalography-guided radiofrequency thermocoagulation of epileptic foci in the eloquent motor cortex: feasibility, safety, and efficacy. World Neurosurg 164:e492–e500. https://doi.org/10.1016/j.wneu.2022.04.133

    Article  PubMed  Google Scholar 

  21. Khan M, Chari A, Seunarine K, Eltze C, Moeller F, D’Arco F, Thornton R, Das K, Boyd S, Helen Cross J, Zubair Tahir M, Tisdall MM (2022) Proportion of resected seizure onset zone contacts in pediatric stereo-EEG-guided resective surgery does not correlate with outcome. Clin Neurophysiol 138:18–24. https://doi.org/10.1016/j.clinph.2022.03.012

    Article  PubMed  Google Scholar 

  22. Billiet C, Joye I, Mercier C, Depuydt L, De Kerf G, Vermeulen P, Van Laere S, Van de Kelft E, Meijnders P, Verellen D, Dirix P (2020) Outcome and toxicity of hypofractionated image-guided SABR for spinal oligometastases. Clin Transl Radiat Oncol 25(24):65–70. https://doi.org/10.1016/j.ctro.2020.06.011

    Article  Google Scholar 

  23. Wang M, Zhang Y, Xue P, Zhou Y, Shi W, Zhou S, Wang Y, Li H, Zhao R (2021) Optimized SEEG-guided radiofrequency thermocoagulation in the treatment of pediatric hypothalamic hamartomas. Seizure 86:102–108. https://doi.org/10.1016/j.seizure.2021.01.023

    Article  PubMed  Google Scholar 

  24. Miller BA, Salehi A, Limbrick DD Jr, Smyth MD (2017) Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr 20(4):364–370. https://doi.org/10.3171/2017.5.PEDS1782

    Article  PubMed  Google Scholar 

  25. De Benedictis A, Trezza A, Carai A, Genovese E, Procaccini E, Messina R, Randi F, Cossu S, Esposito G, Palma P, Amante P, Rizzi M, Marras CE (2017) Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus 42(5):E7. https://doi.org/10.3171/2017.2.FOCUS16579

    Article  PubMed  Google Scholar 

  26. Zhang C, Wu J, Xu C, Zheng W, Pan Y, Li C, Zhou Y (2018) Minimally invasive full-endoscopic posterior cervical foraminotomy assisted by O-arm-based navigation. Pain Physician 21(3):E215–E223

    PubMed  Google Scholar 

  27. Kutlay M, Kural C, Solmaz I, Tehli O, Temiz C, Daneyemez M, Izci Y (2016) Fully endoscopic resection of intra-axial brain lesions using neuronavigated pediatric anoscope. Turk Neurosurg 26(4):491–499. https://doi.org/10.5137/1019-5149.JTN.13789-14.0

    Article  PubMed  Google Scholar 

  28. Unsgård G, Rao V, Solheim O, Lindseth F (2016) Clinical experience with navigated 3D ultrasound angiography (power Doppler) in microsurgical treatment of brain arteriovenous malformations. Acta Neurochir (Wien) 158(5):875–83. https://doi.org/10.1007/s00701-016-2750-3

    Article  PubMed  Google Scholar 

  29. Feng S, Zhang Y, Sun Z, Wu C, Xue Z, Ma Y, Jiang J (2017) Application of multimodal navigation together with fluorescein angiography in microsurgical treatment of cerebral arteriovenous malformations. Sci Rep 7(1):14822. https://doi.org/10.1038/s41598-017-05913-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho TY, Lin CW, Chang CC, Chen HT, Chen YJ, Lo YS, Hsiao PH, Chen PC, Lin CS, Tsou HK (2020) Percutaneous endoscopic unilateral laminotomy and bilateral decompression under 3D real-time image-guided navigation for spinal stenosis in degenerative lumbar kyphoscoliosis patients: an innovative preliminary study. BMC Musculoskelet Disord 21(1):734. https://doi.org/10.1186/s12891-020-03745-w

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katsevman GA, Spencer RD, Daffner SD, Bhatia S, Marsh RA, France JC, Cui S, Dekeseredy P, Sedney CL (2021) Robotic-navigated percutaneous pedicle screw placement has less facet joint violation than fluoroscopy-guided percutaneous screws. World Neurosurg 151:e731–e737. https://doi.org/10.1016/j.wneu.2021.04.117

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rubino F, Eichberg DG, Cordeiro JG, Di L, Eliahu K, Shah AH, Luther EM, Lu VM, Komotar RJ, Ivan ME (2022) Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: a single center experience. J Robot Surg 16(3):549–557. https://doi.org/10.1007/s11701-021-01278-5

    Article  PubMed  Google Scholar 

  33. Vakharia VN, Rodionov R, Miserocchi A, McEvoy AW, O’Keeffe A, Granados A, Shapoori S, Sparks R, Ourselin S, Duncan JS (2021) Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial. Sci Rep 11(1):17127. https://doi.org/10.1038/s41598-021-96662-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, Hope OA, Kalamangalam GP, Slater JD, Thompson SA (2019) Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol 76(6):672–681. https://doi.org/10.1001/jamaneurol.2019.0098

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morgenstern PF, Connors S, Reiner AS, Greenfield JP (2016) Image guidance for placement of Ommaya reservoirs: comparison of fluoroscopy and frameless stereotactic navigation in 145 patients. World Neurosurg 93:154–8. https://doi.org/10.1016/j.wneu.2016.04.090

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ankory R, Kadar A, Netzer D, Schermann H, Gortzak Y, Dadia S, Kollander Y, Segal O (2019) 3D imaging and stealth navigation instead of CT guidance for radiofrequency ablation of osteoid osteomas: a series of 52 patients. BMC Musculoskelet Disord 20(1):579. https://doi.org/10.1186/s12891-019-2963-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kovalenko RA, Kashin VA, Cherebillo VY (2021) Individual navigation templates for subcortical screw placement in lumbar spine. Sovrem Tekhnologii Med 13(5):41–46. https://doi.org/10.17691/stm2021.13.5.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. La Rocca G, Mazzucchi E, Pignotti F, Nasto LA, Galieri G, Olivi A, De Santis V, Rinaldi P, Pola E, Sabatino G (2022) Intraoperative CT-guided navigation versus fluoroscopy for percutaneous pedicle screw placement in 192 patients: a comparative analysis. J Orthop Traumatol 23(1):44. https://doi.org/10.1186/s10195-022-00661-8

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hubbe U, Sircar R, Scheiwe C, Scholz C, Kogias E, Krüger MT, Volz F, Klingler JH (2015) Surgeon, staff, and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion: impact of 3D fluoroscopy-based navigation partially replacing conventional fluoroscopy: study protocol for a randomized controlled trial. Trials 9(16):142. https://doi.org/10.1186/s13063-015-0690-5

    Article  Google Scholar 

  40. Vardiman AB, Wallace DJ, Booher GA, Crawford NR, Riggleman JR, Greeley SL, Ledonio CG (2020) Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery? J Robot Surg 14(4):567–572. https://doi.org/10.1007/s11701-019-01019-9

    Article  PubMed  Google Scholar 

  41. Wang R, Han Y, Lu L (2019) Computer-assisted design template guided percutaneous radiofrequency thermocoagulation through foramen rotundum for treatment of isolated V2 trigeminal neuralgia: a retrospective case-control study. Pain Res Manag 3(2019):9784020. https://doi.org/10.1155/2019/9784020

    Article  Google Scholar 

  42. Wei J, Zhang C, Ma L, Zhang C (2022) Artificial intelligence algorithm-based intraoperative magnetic resonance navigation for glioma resection. Contrast Media Mol Imaging 4(2022):4147970. https://doi.org/10.1155/2022/4147970

    Article  CAS  Google Scholar 

  43. Elmi-Terander A, Burström G, Nachabé R, Fagerlund M, Ståhl F, Charalampidis A, Edström E, Gerdhem P (2020) Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep 10(1):707. https://doi.org/10.1038/s41598-020-57693-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panciani PP, Fontanella M, Schatlo B, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg 114(1):37–41. https://doi.org/10.1016/j.clineuro.2011.09.001

    Article  PubMed  Google Scholar 

  45. Lee SK, Huang S, Zhang L, Ballangrud AM, Aristophanous M, Cervino Arriba LI, Li G (2021) Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys 22(5):48–57. https://doi.org/10.1002/acm2.13241

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, Solberg TK, Salvesen Ø, Carlsen SM, Nygaard ØP, Gulati S (2015) Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ 1(350):h1603. https://doi.org/10.1136/bmj.h1603

    Article  Google Scholar 

  47. Cho JM, Lim JJ, Kim SH, Cho KG (2015) Clinical experience of glioma surgery using “tailed bullet”: overcoming the limitations of conventional neuro-navigation guided surgery. Yonsei Med J 56(2):388–396. https://doi.org/10.3349/ymj.2015.56.2.388.PMID:25683986;PMCID:PMC4329349

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zong CL, Shi YL, Jia JQ, Ding MC, Chang SP, Lu JB, Chen YL, Tian L (2021) A retrospective study to compare the treatment outcomes with and without surgical navigation for fracture of the orbital wall. Chin J Traumatol 24(1):11–17. https://doi.org/10.1016/j.cjtee.2020.10.002

    Article  PubMed  Google Scholar 

  49. Wang WH, Hung YC, Hsu SP, Lin CF, Chen HH, Shih YH, Lee CC (2015) Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage. J Chin Med Assoc 78(2):101–107. https://doi.org/10.1016/j.jcma.2014.08.013

    Article  PubMed  Google Scholar 

  50. Schebesch KM, Höhne J, Rosengarth K, Noeva E, Schmidt NO, Proescholdt M (2022) Fluorescein-guided resection of newly diagnosed high-grade glioma: impact on extent of resection and outcome. Brain Spine 9(2):101690. https://doi.org/10.1016/j.bas.2022.101690

    Article  Google Scholar 

  51. Feng R, Hu J, Wu J, Lang L, Ma C, Sun B, Gu X, Pan L (2018) Accurate source imaging based on high resolution scalp electroencephalography and individualized finite difference head models in epilepsy pre-surgical workup. Seizure 59:126–131. https://doi.org/10.1016/j.seizure.2018.05.009

    Article  PubMed  Google Scholar 

  52. Yang B, Li B, Xu C, Hu S, Dai M, Xia J, Luo P, Shi X, Zhao Z, Dong X, Fei Z, Fu F (2019) Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema. Neuroimage Clin 23:101909. https://doi.org/10.1016/j.nicl.2019.101909

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alhilani M, Tamilia E, Ricci L, Ricci L, Grant PE, Madsen JR, Pearl PL, Papadelis C (2020) Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin Neurophysiol 131(3):734–743. https://doi.org/10.1016/j.clinph.2019.12.408

    Article  PubMed  PubMed Central  Google Scholar 

  54. Young JJ, Coulehan K, Fields MC, Yoo JY, Marcuse LV, Jette N, Panov F, Ghatan S, Bender HA (2018) Language mapping using electrocorticography versus stereoelectroencephalography: a case series. Epilepsy Behav 84:148–151. https://doi.org/10.1016/j.yebeh.2018.04.032

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gabison S, McGillivray C, Hitzig SL, Nussbaum E (2015) A study of the utility and equivalency of 2 methods of wound measurement: digitized tracing versus digital photography. Adv Skin Wound Care 28(6):252–258. https://doi.org/10.1097/01.ASW.0000465301.37313.57

    Article  PubMed  Google Scholar 

  56. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 28(366):l4898. https://doi.org/10.1136/bmj.l4898

    Article  Google Scholar 

  57. Venkatesh KP, Raza MM, Kvedar JC (2022) Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. npj Digit Med 5:150. https://doi.org/10.1038/s41746-022-00694-7

    Article  PubMed  PubMed Central  Google Scholar 

  58. US Food and Drug Administration. Medical Device Development Tools (MDDT). Updated 5 May 2022. Retrieved from https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt

  59. Coorey G, Figtree GA, Fletcher DF et al (2022) The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. npj Digit Med 5:126. https://doi.org/10.1038/s41746-022-00640-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sorayouth Chumnanvej, Siriluk Chumnanvej, and Susmit Tripathi all contributed sufficiently to the study and agreed on the results and conclusions. Sorayouth Chumnanvej and Siriluk Chumnanvej: data collection, analysis, writing manuscript, and revising manuscript. Susmit Tripathi: analysis, writing manuscript, revising, and finalizing manuscript.

Corresponding author

Correspondence to Susmit Tripathi.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumnanvej, S., Chumnanvej, S. & Tripathi, S. Assessing the benefits of digital twins in neurosurgery: a systematic review. Neurosurg Rev 47, 52 (2024). https://doi.org/10.1007/s10143-023-02260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02260-5

Keywords