Abstract
Digital twins are virtual replicas of their physical counterparts, and can assist in delivering personalized surgical care. This PRISMA guideline-based systematic review evaluates current literature addressing the effectiveness and role of digital twins in many stages of neurosurgical management. The aim of this review is to provide a high-quality analysis of relevant, randomized controlled trials and observational studies addressing the neurosurgical applicability of a variety of digital twin technologies. Using pre-specified criteria, we evaluated 25 randomized controlled trials and observational studies on the applications of digital twins, including navigation, robotics, and image-guided neurosurgeries. All 25 studies compared these technologies against usual surgical approaches. Risk of bias analyses using the Cochrane risk of bias tool for randomized trials (Rob 2) found “low” risk of bias in the majority of studies (23/25). Overall, this systematic review shows that digital twin applications have the potential to be more effective than conventional neurosurgical approaches when applied to brain and spinal surgery. Moreover, the application of these novel technologies may also lead to fewer post-operative complications.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Data availability
Not applicable.
References
Mashour GA, Woodrum DT, Avidan MS (2015) Neurological complications of surgery and anaesthesia. Br J Anaesth 114(2):194–203. https://doi.org/10.1093/bja/aeu296
Budohoski KP, Ngerageza JG, Austard B, Fuller A, Galler R, Haglund M, Lett R, Lieberman IH, Mangat HS, March K, Olouch-Olunya D, Piquer J, Qureshi M, Santos MM, Schöller K, Shabani HK, Trivedi RA, Young P, Zubkov MR, Härtl R, Stieg PE (2018) Neurosurgery in East Africa: Innovations. World Neurosurg 113:436–452. https://doi.org/10.1016/j.wneu.2018.01.085
Singh R, Baby B, Suri A (2019) A virtual repository of neurosurgical instrumentation for neuroengineering research and collaboration. World Neurosurg 126:e84–e93. https://doi.org/10.1016/j.wneu.2019.01.192
Thomas NWD, Sinclair J (2015) Image-guided neurosurgery: history and current clinical applications. J Med Imaging Radiat Sci 46(3):331–342. https://doi.org/10.1016/j.jmir.2015.06.003
Graziano F, Bue EL, Scalia G, Umana GE, Lacopino DG, Tumbiolo S, Maugeri R, Nicoletti G (2021) Neurosurgical post-operative complications with incidental life-saving findings. Interdiscip Neurosurg 24. https://doi.org/10.1016/j.inat.2020.101088
LandrielIbañez FA, Hem S, Ajler P, Vecchi E, Ciraolo C, Baccanelli M, Tramontano R, Knezevich F, Carrizo A (2011) A new classification of complications in neurosurgery. World Neurosurg 75(5–6):709–15. https://doi.org/10.1016/j.wneu.2010.11.010. discussion 604-11
Panda NB, Mahajan S, Chauhan R (2019) Management of postoperative neurosurgical patients. 81Management of postoperative neurosurgical patients Panda et al. J J Neuroanaesthesiol Crit Care 6:80–86. https://doi.org/10.1055/s-0039-1689055
Kamel Boulos MN, Zhang P (2021) Digital twins: from personalised medicine to precision public health. J Pers Med 11(8):745. https://doi.org/10.3390/jpm11080745
Karas CS, Chiocca EA (2007) Neurosurgical robotics: a review of brain and spine applications. J Robot Surg 1(1):39–43. https://doi.org/10.1007/s11701-006-0006-6
Khoshnevisan A, Allahabadi NS (2012) Neuronavigation: principles, clinical applications and potential pitfalls. Iran J Psychiatry 7(2):97–103
Qureshi YA, Mohammadi B (2018) Robotic oesophago-gastric cancer surgery. Ann R Coll Surg Engl 100(6_sup):23–30. https://doi.org/10.1308/rcsann.supp1.23
Gopalakrishnan S, Ganeshkumar P (2013) Systematic reviews and meta-analysis: understanding the best evidence in primary healthcare. J Family Med Prim Care 2(1):9–14. https://doi.org/10.4103/2249-4863.109934
Bero L, Chartres N, Diong J, Fabbri A, Ghersi D, Lam J, Lau A, McDonald S, Mintzes B, Sutton P, Turton JL, Woodruff TJ (2018) The risk of bias in observational studies of exposures (ROBINS-E) tool: concerns arising from application to observational studies of exposures. Syst Rev 7(1):242. https://doi.org/10.1186/s13643-018-0915-2
Cho Y, Kim C, Kang B (2019) Risk of bias assessment of randomised controlled trials referenced in the 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care: a cross-sectional review. BMJ Open 9(5):e023725. https://doi.org/10.1136/bmjopen-2018-023725
Borrella-Andrés S, Marqués-García I, Lucha-López MO, Fanlo-Mazas P, Hernández-Secorún M, Pérez-Bellmunt A, Tricás-Moreno JM, Hidalgo-García C (2021) Manual therapy as a management of cervical radiculopathy: a systematic review. Biomed Res Int 3(2021):9936981. https://doi.org/10.1155/2021/9936981
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10(1):89. https://doi.org/10.1186/s13643-021-01626-4
Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T (2021) Digital twins for multiple sclerosis. Front Immunol 3(12):669811. https://doi.org/10.3389/fimmu.2021.669811
Li FY, Chen XL, Xu BN (2016) Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Chronic Dis Transl Med 2(3):181–188. https://doi.org/10.1016/j.cdtm.2016.11.003
Roessler K, Sommer B, Grummich P, Coras R, Kasper BS, Hamer HM, Blumcke I, Stefan H, Buchfelder M (2014) Improved resection in lesional temporal lobe epilepsy surgery using neuronavigation and intraoperative MR imaging: favourable long term surgical and seizure outcome in 88 consecutive cases. Seizure 23(3):201–207. https://doi.org/10.1016/j.seizure.2013.11.013
Xu Y, Wang H, Zhao Y, Feng X, Wu L, Lou L (2022) Stereoelectroencephalography-guided radiofrequency thermocoagulation of epileptic foci in the eloquent motor cortex: feasibility, safety, and efficacy. World Neurosurg 164:e492–e500. https://doi.org/10.1016/j.wneu.2022.04.133
Khan M, Chari A, Seunarine K, Eltze C, Moeller F, D’Arco F, Thornton R, Das K, Boyd S, Helen Cross J, Zubair Tahir M, Tisdall MM (2022) Proportion of resected seizure onset zone contacts in pediatric stereo-EEG-guided resective surgery does not correlate with outcome. Clin Neurophysiol 138:18–24. https://doi.org/10.1016/j.clinph.2022.03.012
Billiet C, Joye I, Mercier C, Depuydt L, De Kerf G, Vermeulen P, Van Laere S, Van de Kelft E, Meijnders P, Verellen D, Dirix P (2020) Outcome and toxicity of hypofractionated image-guided SABR for spinal oligometastases. Clin Transl Radiat Oncol 25(24):65–70. https://doi.org/10.1016/j.ctro.2020.06.011
Wang M, Zhang Y, Xue P, Zhou Y, Shi W, Zhou S, Wang Y, Li H, Zhao R (2021) Optimized SEEG-guided radiofrequency thermocoagulation in the treatment of pediatric hypothalamic hamartomas. Seizure 86:102–108. https://doi.org/10.1016/j.seizure.2021.01.023
Miller BA, Salehi A, Limbrick DD Jr, Smyth MD (2017) Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr 20(4):364–370. https://doi.org/10.3171/2017.5.PEDS1782
De Benedictis A, Trezza A, Carai A, Genovese E, Procaccini E, Messina R, Randi F, Cossu S, Esposito G, Palma P, Amante P, Rizzi M, Marras CE (2017) Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus 42(5):E7. https://doi.org/10.3171/2017.2.FOCUS16579
Zhang C, Wu J, Xu C, Zheng W, Pan Y, Li C, Zhou Y (2018) Minimally invasive full-endoscopic posterior cervical foraminotomy assisted by O-arm-based navigation. Pain Physician 21(3):E215–E223
Kutlay M, Kural C, Solmaz I, Tehli O, Temiz C, Daneyemez M, Izci Y (2016) Fully endoscopic resection of intra-axial brain lesions using neuronavigated pediatric anoscope. Turk Neurosurg 26(4):491–499. https://doi.org/10.5137/1019-5149.JTN.13789-14.0
Unsgård G, Rao V, Solheim O, Lindseth F (2016) Clinical experience with navigated 3D ultrasound angiography (power Doppler) in microsurgical treatment of brain arteriovenous malformations. Acta Neurochir (Wien) 158(5):875–83. https://doi.org/10.1007/s00701-016-2750-3
Feng S, Zhang Y, Sun Z, Wu C, Xue Z, Ma Y, Jiang J (2017) Application of multimodal navigation together with fluorescein angiography in microsurgical treatment of cerebral arteriovenous malformations. Sci Rep 7(1):14822. https://doi.org/10.1038/s41598-017-05913-w
Ho TY, Lin CW, Chang CC, Chen HT, Chen YJ, Lo YS, Hsiao PH, Chen PC, Lin CS, Tsou HK (2020) Percutaneous endoscopic unilateral laminotomy and bilateral decompression under 3D real-time image-guided navigation for spinal stenosis in degenerative lumbar kyphoscoliosis patients: an innovative preliminary study. BMC Musculoskelet Disord 21(1):734. https://doi.org/10.1186/s12891-020-03745-w
Katsevman GA, Spencer RD, Daffner SD, Bhatia S, Marsh RA, France JC, Cui S, Dekeseredy P, Sedney CL (2021) Robotic-navigated percutaneous pedicle screw placement has less facet joint violation than fluoroscopy-guided percutaneous screws. World Neurosurg 151:e731–e737. https://doi.org/10.1016/j.wneu.2021.04.117
Rubino F, Eichberg DG, Cordeiro JG, Di L, Eliahu K, Shah AH, Luther EM, Lu VM, Komotar RJ, Ivan ME (2022) Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: a single center experience. J Robot Surg 16(3):549–557. https://doi.org/10.1007/s11701-021-01278-5
Vakharia VN, Rodionov R, Miserocchi A, McEvoy AW, O’Keeffe A, Granados A, Shapoori S, Sparks R, Ourselin S, Duncan JS (2021) Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial. Sci Rep 11(1):17127. https://doi.org/10.1038/s41598-021-96662-4
Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, Hope OA, Kalamangalam GP, Slater JD, Thompson SA (2019) Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol 76(6):672–681. https://doi.org/10.1001/jamaneurol.2019.0098
Morgenstern PF, Connors S, Reiner AS, Greenfield JP (2016) Image guidance for placement of Ommaya reservoirs: comparison of fluoroscopy and frameless stereotactic navigation in 145 patients. World Neurosurg 93:154–8. https://doi.org/10.1016/j.wneu.2016.04.090
Ankory R, Kadar A, Netzer D, Schermann H, Gortzak Y, Dadia S, Kollander Y, Segal O (2019) 3D imaging and stealth navigation instead of CT guidance for radiofrequency ablation of osteoid osteomas: a series of 52 patients. BMC Musculoskelet Disord 20(1):579. https://doi.org/10.1186/s12891-019-2963-8
Kovalenko RA, Kashin VA, Cherebillo VY (2021) Individual navigation templates for subcortical screw placement in lumbar spine. Sovrem Tekhnologii Med 13(5):41–46. https://doi.org/10.17691/stm2021.13.5.05
La Rocca G, Mazzucchi E, Pignotti F, Nasto LA, Galieri G, Olivi A, De Santis V, Rinaldi P, Pola E, Sabatino G (2022) Intraoperative CT-guided navigation versus fluoroscopy for percutaneous pedicle screw placement in 192 patients: a comparative analysis. J Orthop Traumatol 23(1):44. https://doi.org/10.1186/s10195-022-00661-8
Hubbe U, Sircar R, Scheiwe C, Scholz C, Kogias E, Krüger MT, Volz F, Klingler JH (2015) Surgeon, staff, and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion: impact of 3D fluoroscopy-based navigation partially replacing conventional fluoroscopy: study protocol for a randomized controlled trial. Trials 9(16):142. https://doi.org/10.1186/s13063-015-0690-5
Vardiman AB, Wallace DJ, Booher GA, Crawford NR, Riggleman JR, Greeley SL, Ledonio CG (2020) Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery? J Robot Surg 14(4):567–572. https://doi.org/10.1007/s11701-019-01019-9
Wang R, Han Y, Lu L (2019) Computer-assisted design template guided percutaneous radiofrequency thermocoagulation through foramen rotundum for treatment of isolated V2 trigeminal neuralgia: a retrospective case-control study. Pain Res Manag 3(2019):9784020. https://doi.org/10.1155/2019/9784020
Wei J, Zhang C, Ma L, Zhang C (2022) Artificial intelligence algorithm-based intraoperative magnetic resonance navigation for glioma resection. Contrast Media Mol Imaging 4(2022):4147970. https://doi.org/10.1155/2022/4147970
Elmi-Terander A, Burström G, Nachabé R, Fagerlund M, Ståhl F, Charalampidis A, Edström E, Gerdhem P (2020) Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep 10(1):707. https://doi.org/10.1038/s41598-020-57693-5
Panciani PP, Fontanella M, Schatlo B, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg 114(1):37–41. https://doi.org/10.1016/j.clineuro.2011.09.001
Lee SK, Huang S, Zhang L, Ballangrud AM, Aristophanous M, Cervino Arriba LI, Li G (2021) Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys 22(5):48–57. https://doi.org/10.1002/acm2.13241
Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, Solberg TK, Salvesen Ø, Carlsen SM, Nygaard ØP, Gulati S (2015) Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ 1(350):h1603. https://doi.org/10.1136/bmj.h1603
Cho JM, Lim JJ, Kim SH, Cho KG (2015) Clinical experience of glioma surgery using “tailed bullet”: overcoming the limitations of conventional neuro-navigation guided surgery. Yonsei Med J 56(2):388–396. https://doi.org/10.3349/ymj.2015.56.2.388.PMID:25683986;PMCID:PMC4329349
Zong CL, Shi YL, Jia JQ, Ding MC, Chang SP, Lu JB, Chen YL, Tian L (2021) A retrospective study to compare the treatment outcomes with and without surgical navigation for fracture of the orbital wall. Chin J Traumatol 24(1):11–17. https://doi.org/10.1016/j.cjtee.2020.10.002
Wang WH, Hung YC, Hsu SP, Lin CF, Chen HH, Shih YH, Lee CC (2015) Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage. J Chin Med Assoc 78(2):101–107. https://doi.org/10.1016/j.jcma.2014.08.013
Schebesch KM, Höhne J, Rosengarth K, Noeva E, Schmidt NO, Proescholdt M (2022) Fluorescein-guided resection of newly diagnosed high-grade glioma: impact on extent of resection and outcome. Brain Spine 9(2):101690. https://doi.org/10.1016/j.bas.2022.101690
Feng R, Hu J, Wu J, Lang L, Ma C, Sun B, Gu X, Pan L (2018) Accurate source imaging based on high resolution scalp electroencephalography and individualized finite difference head models in epilepsy pre-surgical workup. Seizure 59:126–131. https://doi.org/10.1016/j.seizure.2018.05.009
Yang B, Li B, Xu C, Hu S, Dai M, Xia J, Luo P, Shi X, Zhao Z, Dong X, Fei Z, Fu F (2019) Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema. Neuroimage Clin 23:101909. https://doi.org/10.1016/j.nicl.2019.101909
Alhilani M, Tamilia E, Ricci L, Ricci L, Grant PE, Madsen JR, Pearl PL, Papadelis C (2020) Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin Neurophysiol 131(3):734–743. https://doi.org/10.1016/j.clinph.2019.12.408
Young JJ, Coulehan K, Fields MC, Yoo JY, Marcuse LV, Jette N, Panov F, Ghatan S, Bender HA (2018) Language mapping using electrocorticography versus stereoelectroencephalography: a case series. Epilepsy Behav 84:148–151. https://doi.org/10.1016/j.yebeh.2018.04.032
Gabison S, McGillivray C, Hitzig SL, Nussbaum E (2015) A study of the utility and equivalency of 2 methods of wound measurement: digitized tracing versus digital photography. Adv Skin Wound Care 28(6):252–258. https://doi.org/10.1097/01.ASW.0000465301.37313.57
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 28(366):l4898. https://doi.org/10.1136/bmj.l4898
Venkatesh KP, Raza MM, Kvedar JC (2022) Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. npj Digit Med 5:150. https://doi.org/10.1038/s41746-022-00694-7
US Food and Drug Administration. Medical Device Development Tools (MDDT). Updated 5 May 2022. Retrieved from https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt
Coorey G, Figtree GA, Fletcher DF et al (2022) The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. npj Digit Med 5:126. https://doi.org/10.1038/s41746-022-00640-7
Author information
Authors and Affiliations
Contributions
Sorayouth Chumnanvej, Siriluk Chumnanvej, and Susmit Tripathi all contributed sufficiently to the study and agreed on the results and conclusions. Sorayouth Chumnanvej and Siriluk Chumnanvej: data collection, analysis, writing manuscript, and revising manuscript. Susmit Tripathi: analysis, writing manuscript, revising, and finalizing manuscript.
Corresponding author
Ethics declarations
Ethical approval
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chumnanvej, S., Chumnanvej, S. & Tripathi, S. Assessing the benefits of digital twins in neurosurgery: a systematic review. Neurosurg Rev 47, 52 (2024). https://doi.org/10.1007/s10143-023-02260-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10143-023-02260-5