Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Conservation properties of a full discretization via a spectral semi-discretization in space and a Lie–Trotter splitting in time for cubic Schrödinger equations with small initial data (or small nonlinearity) are studied. The approximate conservation of the actions of the linear Schrödinger equation, energy, and momentum over long times is shown using modulated Fourier expansions. The results are valid in arbitrary spatial dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bambusi, B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J. 135, 507–567 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. Math. 148, 363–439 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Castella, G. Dujardin, Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation, Preprint, http://damtp.cam.ac.uk/user/dujardin (2008).

  4. D. Cohen, E. Hairer, C. Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math. 110, 113–143 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Cohen, E. Hairer, C. Lubich, Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Ration. Mech. Anal. 187, 341–368 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Dujardin, E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential, Numer. Math. 108, 223–262 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  7. L.H. Eliasson, S.B. Kuksin, KAM for the non-linear Schrödinger equation, Ann. Math., to appear.

  8. E. Faou, B. Grébert, E. Paturel, Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part I: Finite dimensional discretization, Numer. Math. 114, 429–458 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Faou, B. Grébert, E. Paturel, Birkhoff normal form and splitting methods for semi linear Hamiltonian PDEs. Part II: Abstract splitting, Numer. Math. 114, 459–490 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Gauckler, C. Lubich, Nonlinear Schrödinger equations and their spectral semi-discretizations over long times, Found. Comput. Math. (2010, last issue). doi:10.1007/s10208-010-9059-z.

  11. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31, 2nd edn. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  12. J.A.C. Weideman, B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 23, 485–507 (1986).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Gauckler.

Additional information

Communicated by Arieh Iserles.

Dedicated to Ernst Hairer on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauckler, L., Lubich, C. Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times. Found Comput Math 10, 275–302 (2010). https://doi.org/10.1007/s10208-010-9063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9063-3

Keywords

Mathematics Subject Classification (2000)