Abstract
Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision.
Appendix B by Anthony Baker discusses a separable, compact metric space with infinite-dimensional α-scale homology.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan, Orsay, 1974. Astérisque, No. 32–33 (Soc. Math. France, Paris, 1976), pp. 43–72.
M. Belkin, P. Niyogi, Convergence of Laplacian eigenmaps. Preprint, May (2008).
M. Belkin, E. De Vito, L. Rosasco, Random estimates of operators and their spectral properties for learning. Working paper.
R. Bott, L.W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. (Springer, New York, 1982).
G. Carlsson, Topology and data, Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009).
G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76(1), 1–12 (2008).
F. Chazal, S.Y. Oudot, Towards persistence-based reconstruction in Euclidean spaces, in Computational geometry (SCG’08) (ACM, New York, 2008), pp. 232–241.
J. Cheeger, M. Gromov, L 2-cohomology and group cohomology, Topology 25(2), 189–215 (1986).
F.R.K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, vol. 92 (Published for the Conference Board of the Mathematical Sciences, Washington, 1997).
R.R. Coifman, M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006).
W. Dicks, T. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedic. 93, 121–137 (2002).
M.P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications (Birkhäuser, Boston, 1992). Translated from the second Portuguese edition by Francis Flaherty.
J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Am. J. Math. 98(1), 79–104 (1976).
J. Dodziuk, De Rham-Hodge theory for L 2-cohomology of infinite coverings, Topology 16(2), 157–165 (1977).
J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L 2-invariants and the Atiyah conjecture, Commun. Pure Appl. Math. 56(7), 839–873 (2003). Dedicated to the memory of Jürgen K. Moser.
B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17, 240–255 (1945).
H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28(4), 511–533 (2002). Discrete and computational geometry and graph drawing (Columbia, SC, 2001).
R. Forman, A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c, 35 pp. (electronic) 2002.
J. Friedman, Computing Betti numbers via combinatorial Laplacians, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996 (ACM, New York, 1996), pp. 386–391.
G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7(3), 1005–1028 (2008).
J.-C. Hausmann, On the Vietoris–Rips complexes and a cohomology theory for metric spaces, in Prospects in Topology, Princeton, NJ, 1994, Ann. of Math. Stud., vol. 138 (Princeton Univ. Press, Princeton, 1995), pp. 175–188.
W.V.D. Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1941).
X. Jiang, L.-H. Lim, Y. Yao, Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program. 127(1), 203–244 (2011).
S. Lang, Analysis II (Addison-Wesley, Reading, 1969).
A.B. Lee, K.S. Pedersen, D. Mumford, The non-linear statistics of high-contrast patches in natural images, Int. J. Comput. Vis. 54, 83–103 (2003).
P. Linnell, T. Schick, Finite group extensions and the Atiyah conjecture, J. Am. Math. Soc. 20(4), 1003–1051 (2007).
J. Lott, W. Lück, L 2-topological invariants of 3-manifolds, Invent. Math. 120(1), 15–60 (1995).
W. Lück, Approximating L 2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4(4), 455–481 (1994).
W. Lück, L 2 -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 44 (Springer, Berlin, 2002). 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984).
P. Pansu, Introduction to L 2 Betti numbers, in Riemannian geometry, Waterloo, ON, 1993. Fields Inst. Monogr., vol. 4 (Amer. Math. Soc, Providence, 1996), pp. 53–86.
T. Schick, Integrality of L 2-Betti numbers, Math. Ann. 317(4), 727–750 (2000).
T. Schick, L 2-determinant class and approximation of L 2-Betti numbers, Trans. Am. Math. Soc. 353(8), 3247–3265 (2001).
S. Smale, D.-X. Zhou, Geometry on probability spaces. Constr. Approx. 30(3), 311–323 (2009).
S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, T. Poggio, Mathematics of the neural response. Found. Comput. Math. 10(1), 67–91 (2010).
E.H. Spanier, Algebraic Topology (Springer, New York, 1981). Corrected reprint.
F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol. 94 (Springer, New York, 1983). Corrected reprint of the 1971 edition.
R.L. Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, vol. 32 (American Mathematical Society, Providence, 1979). Reprint of 1963 edition.
D. Zhou, B. Schölkopf, Regularization on discrete spaces, in Pattern Recognition, Proc. 27th DAGM Symposium, Berlin (2005), pp. 361–368.
A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33(2), 249–274 (2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Douglas Arnold.
With Appendix B by Anthony W. Baker.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bartholdi, L., Schick, T., Smale, N. et al. Hodge Theory on Metric Spaces. Found Comput Math 12, 1–48 (2012). https://doi.org/10.1007/s10208-011-9107-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-011-9107-3