Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algebraic Osculation and Application to Factorization of Sparse Polynomials

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We prove a theorem on algebraic osculation and apply our result to the computer algebra problem of polynomial factorization. We consider X a smooth completion of ℂ2 and D an effective divisor with support the boundary ∂X=X∖ℂ2. Our main result gives explicit conditions that are necessary and sufficient for a given Cartier divisor on the subscheme \((|D|,\mathcal{O}_{D})\) to extend to X. These osculation criteria are expressed with residues. When applied to the toric setting, our result gives rise to a new algorithm for factoring sparse bivariate polynomials which takes into account the geometry of the Newton polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The genericity must be defined relative to some invariant, such as the cardinality of interior lattice points, or the volume.

References

  1. F. Abu Salem, S. Gao, A.G.B. Lauder, Factoring polynomials via polytopes, in Proc. of ISSAC (2004), pp. 4–11.

    Chapter  Google Scholar 

  2. M. Avendano, T. Krick, M. Sombra, Factoring bivariate sparse (lacunary) polynomials, J. Complex. 23, 193–216 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. W.P. Barth, K. Hulek, C.A.M. Peters, A. Van De Ven, Compact Complex Surfaces, 2nd edn. (Springer, Berlin, 2004).

    MATH  Google Scholar 

  4. K. Belabas, M. van Hoeij, J. Kluners, A. Steel, Factoring polynomials over global fields, J. Théor. Nr. Bordx. 21(1), 15–39 (2009).

    Article  MATH  Google Scholar 

  5. G. Chèze, Absolute polynomial factorization in two variables and the knapsack problem, in Proc. of ISSAC (2004), pp. 87–94.

    Chapter  Google Scholar 

  6. G. Chèze, A. Galligo, From an approximate to an exact factorization, J. Symb. Comput. 41(6), 682–696 (2006).

    Article  MATH  Google Scholar 

  7. G. Chèze, G. Lecerf, Lifting and recombination techniques for absolute factorization, J. Complex. 23(3), 380–420 (2007).

    Article  MATH  Google Scholar 

  8. V. Danilov, The geometry of toric varieties, Russ. Math. Surv. 33, 97–154 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Elkadi, A. Galligo, M. Weimann, Towards toric absolute factorization, J. Symb. Comput. 44(9), 1194–1211 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Fulton, Introduction to Toric Varieties. Annals of Math. Studies (Princeton University Press, Princeton, 1993).

    MATH  Google Scholar 

  11. A. Galligo, D. Rupprecht, Irreducible decomposition of curves, J. Symb. Comput. 33, 661–677 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Gao, A.G.B. Lauder, Decomposition of polytopes and polynomials, Discrete Comput. Geom. 6(1), 89–124 (2001).

    MathSciNet  Google Scholar 

  13. M.L. Green, Secant functions, the Reiss relation and its converse, Trans. Am. Math. Soc. 280(2), 499–507 (1983).

    Article  MATH  Google Scholar 

  14. P.A. Griffiths, Variations on a theorem of Abel, Invent. Math. 35, 321–390 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. P.A. Griffiths, J. Harris, Principles of Algebraic Geometry. Pure and Applied Mathematics (Wiley-Interscience, New York, 1978).

    MATH  Google Scholar 

  16. P.A. Griffiths, J. Harris, Residues and zero-cycles on algebraic varieties, Ann. Math. 128, 461–505 (1978).

    Article  MathSciNet  Google Scholar 

  17. G. Henkin, M. Passare, Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Invent. Math. 135, 297–328 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. A.G. Khovansky, Newton polyhedra and toric varieties, Funct. Anal. Appl. 11, 56–67 (1977).

    Google Scholar 

  19. G. Lecerf, Improved dense multivariate polynomial factorization algorithms, J. Symb. Comput. 42, 477–494 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. A.M. Ostrowski, On multiplication and factorization of polynomials. Lexicographic orderings and extreme aggregates of terms, Aequ. Math. 13, 201–228 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Tsikh, Multidimensional residues and their applications, Trans. Am. Math. Soc. 103 (1992).

  22. J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 1st edn. (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  23. M. Weimann, Trace et calcul résiduel: nouvelle version du théorème d’Abel-inverse et formes abéliennes, Ann. Toulouse 16(2), 397–424 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Weimann, An interpolation theorem in toric varieties, Ann. Inst. Fourier 58(4), 1371–1381 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Weimann, A lifting and recombination algorithm for rational factorization of sparse polynomials, J. Complex. 26(6), 608–628 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. J.A. Wood, Osculation by algebraic hypersurfaces, J. Differ. Geom. 18, 563–573 (1983).

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Michel Brion, Stéphane Druel, José Ignacio Burgos, and Martin Sombra for their helpful comments. We also thank Mohamed Elkadi and André Galligo, who suggested that we pay attention to the interplay between toric geometry and sparse polynomial factorization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weimann.

Additional information

Communicated by Teresa Krick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weimann, M. Algebraic Osculation and Application to Factorization of Sparse Polynomials. Found Comput Math 12, 173–201 (2012). https://doi.org/10.1007/s10208-012-9114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9114-z

Keywords

Mathematics Subject Classification (2000)