Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Randomized Homotopy for the Hermitian Eigenpair Problem

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We describe and analyze a randomized homotopy algorithm for the Hermitian eigenvalue problem. Given an \(n\times n\) Hermitian matrix \(A\), the algorithm returns, almost surely, a pair \((\lambda ,v)\) which approximates, in a very strong sense, an eigenpair of \(A\). We prove that the expected cost of this algorithm, where the expectation is both over the random choices of the algorithm and a probability distribution on the input matrix \(A\), is \(\mathcal{{O}}(n^6)\), that is, cubic on the input size. Our result relies on a cost assumption for some pseudorandom number generators whose rationale is argued by us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Armentano. Stochastic perturbations and smooth condition numbers. J. Complexity, 26(2):161–171, 2010.

  2. D. Armentano. Complexity of Path-Following Methods for the Eigenvalue Problem. Found. Comput. Math., 14(2):185–236, 2014.

  3. C. Beltrán and L.M. Pardo. Smale’s 17th problem: average polynomial time to compute affine and projective solutions. J. Amer. Math. Soc., 22(2):363–385, 2009.

  4. C. Beltrán and L.M. Pardo. Fast linear homotopy to find approximate zeros of polynomial systems. Found. Comput. Math., 11(1):95–129, 2011.

  5. I. Briquel, F. Cucker, J. Peña, and V. Roshchina. Fast computation of zeros of polynomial systems with bounded degree under finite-precision. To appear in Math. of Computation, 2013.

  6. W. Bruns and U. Vetter. Determinantal rings, volume 1327 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.

  7. P. Bürgisser and F. Cucker. On a problem posed by Steve Smale. Annals of Mathematics, 174:1785–1836, 2011.

  8. P. Bürgisser and F. Cucker. Condition, volume 349 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2013.

  9. K.P. Choi. On the medians of gamma distributions and an equation of Ramanujan. Proc. Amer. Math. Soc., 121(1):245–251, 1994.

  10. P. Deift. Some open problems in random matrix theory and the theory of integrable systems. In Integrable systems and random matrices, volume 458 of Contemp. Math., pages 419–430. Amer. Math. Soc., Providence, RI, 2008.

  11. J.W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

  12. L. Devroye. Nonuniform random variate generation. Springer-Verlag, New York, 1986.

  13. Alan Edelman and N. Raj Rao. Random matrix theory. Acta Numer., 14:233–297, 2005.

  14. W. Hrmann, J. Leydold, and G. Derflinger. Automatic nonuniform random variate generation. Springer-Verlag, New York, 2004.

  15. T.-Y. Li and T. Sauer. Homotopy method for generalized eigenvalue problems \(Ax=\lambda Bx\). Linear Algebra Appl., 91:65–74, 1987.

  16. X.H. Li and G. Menon. Numerical solution of Dyson Brownian motion and a sampling scheme for invariant matrix ensembles. J. Stat. Phys., 153(5):801–812, 2013.

  17. M.L. Mehta. Random matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004.

  18. S. Olver and A. Townsend. Fast inverse transform sampling in one and two dimensions. Available at http://arxiv.org/pdf/1307.1223.pdf, 2013

  19. B.N. Parlett. The symmetric eigenvalue problem, volume 20 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

  20. C.W. Pfrang, P. Deift, and G. Menon. How long does it take to compute the eigenvalues of a random symmetric matrix? Available at http://arxiv.org/pdf/1203.4635.pdf, 2013

  21. M. Shub. Complexity of Bézout’s Theorem VI geodesics in the condition (number) metric. Found. Comput. Math., 9:171–178, 2009.

  22. M. Shub and S. Smale. Complexity of Bézout’s Theorem I: geometric aspects. Journal of the Amer. Math. Soc., 6:459–501, 1993.

  23. S. Smale. Newton’s method estimates from data at one point. In R. Ewing, K. Gross, and C. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer-Verlag, 1986.

  24. S. Smale. Mathematical problems for the next century. In V. Arnold, M. Atiyah, P. Lax, and B. Mazur, editors, Mathematics: Frontiers and Perspectives, pages 271–294. AMS, 2000.

Download references

Acknowledgments

Diego Armentano was partially supported by Agencia Nacional de Investigación e Innovación (ANII). Felipe Cucker was partially funded by a GRF grant from the Research Grants Council of the Hong Kong SAR (project number CityU 100810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Armentano.

Additional information

Communicated by Teresa Krick and James Renegar.

Dedicated to Mike Shub on his 70th birthday, for years of friendship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armentano, D., Cucker, F. A Randomized Homotopy for the Hermitian Eigenpair Problem. Found Comput Math 15, 281–312 (2015). https://doi.org/10.1007/s10208-014-9217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9217-9

Keywords

Mathematics Subject Classification