Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present and illustrate a general methodology to apply KAM theory in particular problems, based on an a posteriori approach. We focus on the existence of real analytic quasi-periodic Lagrangian invariant tori for symplectic maps. The purpose is to verify the hypotheses of a KAM theorem in an a posteriori format: Given a parameterization of an approximately invariant torus, we have to check non-resonance (Diophantine) conditions, non-degeneracy conditions and certain inequalities to hold. To check such inequalities, we require to control the analytic norm of some functions that depend on the map, the ambient structure and the parameterization. To this end, we propose an efficient computer-assisted methodology, using fast Fourier transform, having the same asymptotic cost of using the parameterization method for obtaining numerical approximations of invariant tori. We illustrate our methodology by proving the existence of invariant curves for the standard map (up to \(\varepsilon =0.9716\)), meandering curves for the non-twist standard map and 2-dimensional tori for the Froeschlé map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. http://capd.ii.uj.edu.pl/download.php.

  2. V.I. Arnold. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13–40, 1963.

  3. V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surveys, 18:85–192, 1963.

    Article  MathSciNet  Google Scholar 

  4. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn. A proof of K lmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method. Nuovo Cimento B (11), 79(2):201–223, 1984.

  5. J.B. Bost. Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel,\(\,\ldots \)). Astérisque, (133-134):113–157, 1986. Seminar Bourbaki, Vol. 1984/85.

  6. H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Quasi-periodic motions in families of dynamical systems. Order amidst chaos. Lecture Notes in Math., Vol 1645. Springer, Berlin, 1996.

  7. R. Calleja, A. Celletti, and R. de la Llave. A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J. Differential Equations, 255(5):978–1049, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Calleja and R. de la Llave. A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification. Nonlinearity, 23(9):2029–2058, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Calleja and J.-Ll. Figueras. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. Chaos, 22(3):033114, 2012.

  10. M. Canadell and A. Haro. Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori. In F. Casas, V. Martínez (eds.), Advances in Differential Equations and Applications, volume 4 of SEMA SIMAI Springer Series. Springer, 2014.

  11. M. Canadell and A. Haro. A KAM-like theorem for quasi-periodic normally hyperbolic invariant tori. Preprint, 2015.

  12. A. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and J. Gómez-Serrano. Finite time singularities for the free boundary incompressible Euler equations. Ann. Math., 178(3):1061–1134, 2013.

  13. A. Celletti and L. Chierchia. Construction of Analytic KAM Surfaces and Effective Stability Bounds. Comm. Math. Phys., 118(1):199–161, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Celletti and L. Chierchia. A constructive theory of Lagrangian tori and computer-assisted applications. In Dynamics Reported, pages 60–129. Springer, Berlin, 1995.

  15. A. Celletti and L. Chierchia. On the stability of realistic three-body problems. Comm. Math. Phys., 186(2):413–449, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Celletti and L. Chierchia. KAM stability and celestial mechanics. Mem. Amer. Math. Soc., 187(878):viii+134, 2007.

  17. A. Celletti, C. Falcolini, and U. Locatelli. On the break-down threshold of invariant tori in four dimensional maps. Regul. Chaotic Dyn., 9(3):227–253, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  18. B.V. Chirikov. A universal instability of many-dimensional oscillator systems. Phys. Rep., 52(5):264–379, 1979.

    Article  MathSciNet  Google Scholar 

  19. R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math., pages 175–292. Amer. Math. Soc., Providence, RI, 2001.

  20. R. de la Llave, A. González, À. Jorba, and J. Villanueva. KAM theory without action-angle variables. Nonlinearity, 18(2):855–895, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. de la Llave and A. Luque. Differentiability at the tip of Arnold tongues for Diophantine rotations: numerical studies and renormalization group explanations. J. Stat. Phys., 143(6):1154–1188, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. de la Llave and D. Rana. Accurate strategies for small divisor problems. Bull. Amer. Math. Soc. (N.S.), 22(1):85–90, 1990.

  23. R. de la Llave and D. Rana. Accurate strategies for K.A.M. bounds and their implementation. In Computer aided proofs in analysis (Cincinnati, OH, 1989), volume 28 of IMA Vol. Math. Appl., pages 127–146. Springer, New York, 1991.

  24. D. del Castillo-Negrete, J.M. Greene, and P.J. Morrison. Area preserving nontwist maps: periodic orbits and transition to chaos. Phys. D, 91(1-2):1–23, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Delshams and R. de la Llave. KAM theory and a partial justification of Greene’s criterion for nontwist maps. SIAM J. Math. Anal., 31(6):1235–1269 (electronic), 2000.

  26. L.H. Eliasson, B. Fayad, and R. Krikorian. Around the stability of KAM tori. Duke Math. J., 164(9):1733–1775, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.L. Epstein. How well does the finite Fourier transform approximate the Fourier transform? Comm. Pure Appl. Math., 58(10):1421–1435, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  28. C.L. Fefferman and L.A. Seco. Interval arithmetic in quantum mechanics. In Applications of interval computations (El Paso, TX, 1995), volume 3 of Appl. Optim., pages 145–167. Kluwer Acad. Publ., Dordrecht, 1996.

  29. J.-Ll. Figueras and A. Haro. Reliable computation of robust response tori on the verge of breakdown. SIAM J. Appl. Dyn. Syst., 11:597–628, 2012.

  30. E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions. J. Differential Equations, 246(8):3136–3213, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. M. Fox and J. D. Meiss. Critical invariant circles in asymmetric and multiharmonic generalized standard maps. Commun. Nonlinear Sci. Numer. Simul., 19(4):1004–1026, 2014.

    Article  MathSciNet  Google Scholar 

  32. C. Froesché. Numerical study of a four-dimensional mapping. Astron. Astrophys., 16:172–189, 1972.

    MathSciNet  Google Scholar 

  33. G. Gallavotti. Perturbation theory for classical Hamiltonian systems. In Scaling and self-similarity in physics (Bures-sur-Yvette, 1981/1982), volume 7 of Progr. Phys., pages 359–426. Birkhäuser Boston, Boston, MA, 1983.

  34. A. González, A. Haro, and R. de la Llave. Singularity theory for non-twist KAM tori. Mem. Amer. Math. Soc., 227(1067):vi+115, 2014.

  35. J.M. Greene. A method for determining a stochastic transition. J. Math. Phys, 20(6):1183–1201, 1975.

    Article  Google Scholar 

  36. A. Haro. The Primitive Function of an Exact Symplectomorphism. PhD thesis, Universitat de Barcelona, 1998. Available at http://hdl.handle.net/2445/42094.

  37. A. Haro, M. Canadell, J.-Ll. Figueras, A. Luque, and J.M. Mondelo. The parameterization method for invariant manifolds: From rigorous results to effective computations. Applied Mathematical Sciences, Vol. 195. Springer, 2016.

  38. A. Haro and R. de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B, 6(6):1261–1300, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Hass and R. Schlafly. Double bubbles minimize. Ann. of Math. (2), 151(2):459–515, 2000.

  40. M.-R. Herman. Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 2. Astérisque, (144):248, 1986. With a correction to: On the curves invariant under diffeomorphisms of the annulus, Vol. 1 (French) [Astérisque No. 103-104, Soc. Math. France, Paris, 1983; MR 85m:58062].

  41. G. Huguet, R. de la Llave, and Y. Sire. Computation of whiskered invariant tori and their associated manifolds: new fast algorithms. Discrete Contin. Dyn. Syst., 32(4):1309–1353, 2012.

    MathSciNet  MATH  Google Scholar 

  42. À. Jorba, R. de la Llave, and M. Zou. Lindstedt series for lower-dimensional tori. In Hamiltonian systems with three or more degrees of freedom (S’Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 151–167. Kluwer Acad. Publ., Dordrecht, 1999.

  43. I. Jungreis. A method for proving that monotone twist maps have no invariant circles. Ergodic Theory Dynam. Systems, 11(1):79–84, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Kaneko and R. Bagley. Arnold diffusion, ergodicity and intermittency in a coupled standard mapping. Physics Letters A, 110(9):435–440, 1985.

    Article  MathSciNet  Google Scholar 

  45. H. Koch, A. Schenkel, and P. Wittwer. Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev., 38(4):565–604, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  46. A.N. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98:527–530, 1954. Translated in p. 51–56 of Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Como 1977 (eds. G. Casati and J. Ford) Lect. Notes Phys. 93, Springer, Berlin, 1979.

  47. O.E. Lanford, III. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. (N.S.), 6(3):427–434, 1982.

  48. U. Locatelli. Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian. Planetary and Space Science, 46(11):1453–1464, 1998.

    Article  Google Scholar 

  49. U. Locatelli and A. Giorgilli. Invariant tori in the secular motions of the three-body planetary systems. Cel. Mech., 78(1):47–74, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Luque and J. Villanueva. Numerical computation of rotation numbers for quasi-periodic planar curves. Phys. D, 238(20):2025–2044, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Luque and J. Villanueva. A KAM theorem without action-angle variables for elliptic lower dimensional tori. Nonlinearity, 24(4):1033–1080, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Luque and J. Villanueva. A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map. Phys. D, 325:63–73, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  53. R.S. MacKay. Renormalisation in area-preserving maps, volume 6 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co. Inc., River Edge, NJ, 1993.

  54. R.S. MacKay, J.D. Meiss, and J. Stark. Converse KAM theory for symplectic twist maps. Nonlinearity, 2(4):555–570, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  55. R.S. MacKay and I.C. Percival. Converse KAM: theory and practice. Comm. Math. Phys., 98(4):469–512, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  56. J.N. Mather. Non-existence of invariant circles. Ergodic Theory Dyn. Syst., 4:301–309, 1984.

    Article  MATH  Google Scholar 

  57. G.T. Minton. Computer-assisted proofs in geometry and physics. PhD thesis, Massachusetts Institute of Technology, 2013.

  58. A. Morbidelli and A. Giorgilli. Superexponential stability of KAM tori. J. Statist. Phys., 78(5-6):1607–1617, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Moser. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962:1–20, 1962.

  60. J. Moser. On the theory of quasiperiodic motions. SIAM Rev., 8(2):145–172, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Moser. A rapidly convergent iteration method and non-linear differential equations. II. Ann. Scuola Norm. Sup. Pisa (3), 20:499–535, 1966.

    MathSciNet  MATH  Google Scholar 

  62. J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann., 169:136–176, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. I. Neishtadt. Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions. J. Appl. Math. Mech, 45(6):1016–1025, 1981.

    Article  MathSciNet  Google Scholar 

  64. A. Olvera and N.P. Petrov. Regularity properties of critical invariant circles of twist maps, and their universality. SIAM J. Appl. Dyn. Syst., 7(3):962–987, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  65. N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic and the mpfi library. Reliable computing, 11(5):275–290, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  66. T. J. Rivlin. An introduction to the approximation of functions. Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1969.

  67. H. Rüssmann. On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus. In Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pages 598–624. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975.

  68. H. Rüssmann. On a new proof of Moser’s twist mapping theorem. In Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I. Celestial Mech., 14(1):19–31, 1976.

  69. H. Rüssmann. On optimal estimates for the solutions of linear difference equations on the circle. In Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I. Celestial Mech., volume 14, 1976.

  70. D. Salamon and E. Zehnder. KAM theory in configuration space. Comment. Math. Helv., 64(1):84–132, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Schenkel, J. Wehr, and P. Wittwer. Computer-assisted proofs for fixed point problems in Sobolev spaces. Math. Phys. Electron. J., 6:Paper 3, 67, 2000.

  72. C. Simó. Invariant curves of analytic perturbed nontwist area preserving maps. Regul. Chaotic Dyn., 3(3):180–195, 1998. J. Moser at 70.

  73. S. Tompaidis. Approximation of invariant surfaces by periodic orbits in high-dimensional maps: some rigorous results. Experiment. Math., 5(3):197–209, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  74. W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197–1202, 1999.

  75. W. Tucker. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton, NJ, 2011.

    MATH  Google Scholar 

  76. J. Villanueva. Kolmogorov theorem revisited. J. Differential Equations, 244(9):2251–2276, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Villanueva. A new approach to the parameterization method for Lagrangian tori of hamiltonian systems. J. Nonlinear Sci., 2016. doi:10.1007/s00332-016-9342-5.

  78. E. Zehnder. Generalized implicit function theorems with applications to some small divisor problems. II. Comm. Pure Appl. Math., 29(1):49–111, 1976.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to R. Calleja, R. de la Llave and J. Villanueva for useful and fruitful discussions along the last years. We are also grateful to J. B. van den Berg, M. Breden, R. Castelli, A. Celletti, J. Cyranka, J. Gómez-Serrano, J.-P. Lessard, J.D. Mireles-James, K. Mischaikow, C. Simó and P. Zgliczynski for their interest and comments. We would like to acknowledge financial support from the Spanish Grants MTM2012-32541, MTM2015-67724-P (MINECO/FEDER, UE) and the Catalan Grant 2014-SGR-1145. J.-Ll. F. acknowledges the partial support from Essen, L. and C.-G., for mathematical studies. Moreover, A.L. acknowledges support from a postdoctoral position in the ERC Starting Grant 335079. We acknowledge A. Granados and the use of the UPC Dynamical Systems group’s cluster for research computing (see https://dynamicalsystems.upc.edu/en/computing/). Finally, we would like to thank the anonymous referees for helpful comments which led us to write Sect. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luque.

Additional information

Communicated by Christian Lubich.

Appendix: A Heuristic Selection of Parameters to Validate Invariant Tori

Appendix: A Heuristic Selection of Parameters to Validate Invariant Tori

In this appendix, we describe a direct method to select the implementation parameters \(\rho \), \(\delta \), \(\sigma \), \(\rho _{\infty }\), \(d_{{{\mathcal {B}}}}\) and \({{\hat{\rho }}}\), required in Input 4 of Algorithm 5.1 to rigorously validate an invariant torus. The idea consists in using the structure of the constants that appear in Step 4 (c.f. Sect. 5.6). We do not claim that the procedure described below is optimal, but allows us to obtain suitable values of the parameters at a moderate computational cost.

We assume that the term \(2(a_3)^{3\tau +1} \gamma ^3 \rho ^{3 \tau -1} C_3\) does not contribute to the constant \({\mathfrak {C}}_1\), and we look for parameters such that the constants in (108) satisfy \({\mathfrak {C}}_3={\mathfrak {C}}_4={\mathfrak {C}}_5\). The neglected term is, in general, very small (it stands for the control of the approximate Lagrangian character of the approximated torus), and this assumption allows us to simplify the heuristic analysis of the constants.

We proceed in analogy with the procedure described in [37]. We observe that the dependence on \(a_2\) is very simple: It appears only in the expression \(a_3 = 3 \tfrac{a_1}{a_1-1} \tfrac{a_2}{a_2-1}\) and in the final strip of analyticity \(\rho _{\infty }=\rho /a_2\). In order to look for the limit condition, we take \(a_2=\infty \) (so \(\rho _\infty =0\)) in all subsequent computations.

Now we can describe a very simple algorithm to obtain suitable values of the parameters \(\rho \), \(\delta \), \(\sigma \), \(d_{{\mathcal {B}}}\) and \({{\hat{\rho }}}\) for a given parameterization K in a grid of size \({{N}_{\scriptscriptstyle {\mathrm{F}}}}=({N}_{\scriptscriptstyle {\mathrm{F},1}},\ldots ,{N}_{\scriptscriptstyle {\mathrm{F},n}})\):

  1. I.

    We take \(\rho _0=- \log (||E||_{F,0})/(2 \pi N)\), where E is the error of invariance and \(N=\max _{i} \{ {N}_{\scriptscriptstyle {\mathrm{F},i}}\}\). This will be the initial value of \(\rho \).

  2. II.

    For a given value \(\rho \), we consider values \(\delta \in [\tfrac{\rho }{6.5},\tfrac{\rho }{4.5}]\) (recall that \(a_3=\tfrac{\rho }{\delta }\) and \(a_1= \tfrac{a_3}{a_3-3}\)). For any of these values \((\rho ,\delta )\), we compute \(\sigma \) and \(d_{{\mathcal {B}}}\) solving the equations \({\mathfrak {C}}_4={\mathfrak {C}}_5\) and \({\mathfrak {C}}_3={\mathfrak {C}}_4\), which are, respectively, written as follows:

    $$\begin{aligned}&\sigma _*(1-a_1^{-2\tau }) d_{{\mathcal {B}}}-(\sigma -1) \delta (1-a_1^{1-2\tau })=0,\end{aligned}$$
    (116)
    $$\begin{aligned}&\sigma _* (a_3)^{2\tau +1} \gamma ^2 \rho ^{2\tau -1} {{\hat{C}}}_2 - (\sigma -1)(1-a_1^{1-2\tau })(a_1a_3)^{4 \tau }{{\hat{C}}}_5 =0. \end{aligned}$$
    (117)

    Let us recall that \(\sigma _*\), \({{\hat{C}}}_2\) and \({{\hat{C}}}_5\) depend on \(\rho \), \(\delta \), \(\sigma \), \(d_{{\mathcal {B}}}\) and \({{\hat{\rho }}}\). In order to avoid the dependence on \({{\hat{\rho }}}\) in the above expression, we take \(C_{{N}_{\scriptscriptstyle {\mathrm{F}}}}(\rho , {{\hat{\rho }}})=0\) when computing these constants. A suitable value of \({{\hat{\rho }}}\) is fixed later. Then, we select the value of \(\delta \) that minimizes the expression \({\mathfrak {C}}_1 \gamma ^{-4} \rho ^{-4\tau } ||E||_\rho \).

  3. III.

    If \({\mathfrak {C}}_1 \gamma ^{-4} \rho ^{-4\tau } ||E||_\rho \ge 1\), we decrease the value of \(\rho \) and repeat step II, thus obtaining a new value of \({\mathfrak {C}}_1\). We proceed until we find that \({\mathfrak {C}}_1 \gamma ^{-4} \rho ^{-4\tau } ||E||_\rho <1\). If at any point we reach a minimum of the function \({\mathfrak {C}}_1 \gamma ^{-4} \rho ^{-4\tau } ||E||_\rho \), then we stop the computations. If this condition is not satisfied at the minimum, then we need a better approximation of the invariant torus.

  4. IV.

    Assume that we have obtained values of \(\rho \), \(\delta \), \(\sigma \) and \(d_{{\mathcal {B}}}\) as above. Then, we take a sequence of increasing values of \({{\hat{\rho }}}\) (starting at a value slightly greater than \(\rho \)) and compute the constant \(C_{{N}_{\scriptscriptstyle {\mathrm{F}}}}(\rho ,{{\hat{\rho }}})\). Then, we compute again the constant \({\mathfrak {C}}_1\) and the bound \({b}_{\scriptscriptstyle {E}}\) (see Sect. 5.3). We select a value of \({{\hat{\rho }}}\) that minimizes the expression \({\mathfrak {C}}_1 \gamma ^{-4} \rho ^{-4\tau } {b}_{\scriptscriptstyle {E}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueras, JL., Haro, A. & Luque, A. Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach. Found Comput Math 17, 1123–1193 (2017). https://doi.org/10.1007/s10208-016-9339-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9339-3

Keywords

Mathematics Subject Classification