Abstract
This work develops optimal preconditioners for the discrete H(curl) and H(div) problems on two-dimensional surfaces by nodal auxiliary space preconditioning (Hiptmair and Xu in SIAM J Numer Anal 45:2483–2509, 2007). In particular, on unstructured triangulated surfaces, we develop fast and user-friendly preconditioners for the edge and face element discretizations of curl–curl and grad–div problems based on inverting several discrete surface Laplacians. The proposed preconditioners lead to efficient iterative methods for computing harmonic tangential vector fields on discrete surfaces. Numerical experiments on two- and three-dimensional hypersurfaces are presented to test the performance of those surface preconditioners.






Similar content being viewed by others
References
Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26(4), 1146–1165 (2005). https://doi.org/10.1137/S1064827503430138
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)
Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85(2), 197–217 (2000)
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). https://doi.org/10.1017/S0962492906210018
Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Engrg. 198(21-26), 1660–1672 (2009). https://doi.org/10.1016/j.cma.2008.12.017
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47(2), 281–354 (2010). https://doi.org/10.1090/S0273-0979-10-01278-4
Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comp. 36(153), 35–51 (1981). https://doi.org/10.2307/2007724
Bank, R.E., Smith, R.K.: An algebraic multilevel multigraph algorithm. SIAM J. Sci. Comput. 23(5), 1572–1592 (2002). https://doi.org/10.1137/S1064827500381045
Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)
Bonito, A., Demlow, A., Licht, M.: A divergence-conforming finite element method for the surface Stokes equation. SIAM J. Numer. Anal. 58(5), 2764–2798 (2020). https://doi.org/10.1137/19M1284592
Bonito, A., Pasciak, J.E.: Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator. Math. Comp. 81(279), 1263–1288 (2012). https://doi.org/10.1090/S0025-5718-2011-02551-2
Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991). https://doi.org/10.2307/2938661
Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138), 333–390 (1977). https://doi.org/10.2307/2006422
Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its applications (Loughborough, 1983), pp. 257–284. Cambridge Univ. Press, Cambridge (1985)
Buffa, A., Ciarlet Jr., P.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31–48 (2001). https://doi.org/10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2.
Chen, L.: iFEM: an innovative finite element method package in Matlab (2009). University of California Irvine, Technical report
Choi, S.C.T.: Iterative methods for singular linear equations and least-squares problems. ProQuest LLC, Ann Arbor, MI (2007). Thesis (Ph.D.)–Stanford University
Choi, S.C.T., Paige, C.C., Saunders, M.A.: MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. SIAM J. Sci. Comput. 33(4), 1810–1836 (2011). https://doi.org/10.1137/100787921
Cockburn, B., Demlow, A.: Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comp. 85(302), 2609–2638 (2016)
Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). https://doi.org/10.1017/S0962492904000224
Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013). https://doi.org/10.1093/imanum/drs033
Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)
Demlow, A.: Convergence and quasi-optimality of adaptive finite element methods for harmonic forms. Numer. Math. 136(4), 941–971 (2017)
Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007). https://doi.org/10.1137/050642873
Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013). https://doi.org/10.1017/S0962492913000056
Fisher, M., Schröder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields. ACM Trans. Graph. 26, 56–1–56–9 (2007)
Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A. 37, 48–50 (1951). https://doi.org/10.1073/pnas.37.1.48
Gopalakrishnan, J., Neumüller, M., Vassilevski, P.S.: The auxiliary space preconditioner for the de Rham complex. SIAM J. Numer. Anal. 56(6), 3196–3218 (2018). https://doi.org/10.1137/17M1153376.
Hackbusch, W.: Multigrid methods and applications, Springer Series in Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985). https://doi.org/10.1007/978-3-662-02427-0
Hiptmair, R.: Multigrid method for \({\textbf{H}}({\rm div})\) in three dimensions. Electron. Trans. Numer. Anal. 6(Dec.), 133–152 (1997). Special issue on multilevel methods (Copper Mountain, CO, 1997)
Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999). https://doi.org/10.1137/S0036142997326203
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002). https://doi.org/10.1017/S0962492902000041
Hiptmair, R., Ostrowski, J.: Generators of \(H_{1}({{\Gamma }_{h}},{\mathbb{Z}})\) for triangulated surfaces: construction and classification. SIAM J. Comput. 31(5), 1405–1423 (2002). https://doi.org/10.1137/S0097539701386526
Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in \(\textbf{H}(\textbf{curl})\) and \(\textbf{H}({\rm div})\) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007). https://doi.org/10.1137/060660588
Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1-4), 139–191 (2002) (2001). https://doi.org/10.1023/A:1014246117321
Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012)
Hong, Q., Li, Y., Xu, J.: An extended Galerkin analysis in finite element exterior calculus. Math. Comp. 91(335), 1077–1106 (2022)
Kornhuber, R., Yserentant, H.: Multigrid methods for discrete elliptic problems on triangular surfaces. Comput. Vis. Sci. 11(4-6), 251–257 (2008). https://doi.org/10.1007/s00791-008-0102-4
Li, Y.: Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus. SIAM J. Numer. Anal. 57(4), 2019–2042 (2019). https://doi.org/10.1137/18M1229080
Li, Y.: Fast auxiliary space preconditioners on surfaces. arXiv e-prints, arXiv:2011.13502 (2021)
Loghin, D., Wathen, A.J.: Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25(6), 2029–2049 (2004). https://doi.org/10.1137/S1064827502418203
Ma, Y.: Fast solvers for incompressible MHD systems. Penn State (2016). Thesis (Ph.D.)–The Pennsylvania State University
Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011). https://doi.org/10.1002/nla.716
Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)
Nédélec, J.C.: Mixed finite elements in \({\textbf{R}}^3\). Numer. Math. 35(3), 315–341 (1980)
Nepomnyaschikh, S.V.: Decomposition and fictitious domains methods for elliptic boundary value problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991), pp. 62–72. SIAM, Philadelphia, PA (1992)
Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975). https://doi.org/10.1137/0712047
Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods, pp. 292–315. Lecture Notes in Math., Vol. 606. (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome (1977)
Rodríguez, A.A., Bertolazzi, E., Ghiloni, R., Valli, A.: Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems. SIAM J. Numer. Anal. 51(4), 2380–2402 (2013). https://doi.org/10.1137/120890648
Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid methods, Frontiers Appl. Math., vol. 3, pp. 73–130. SIAM, Philadelphia, PA (1987)
Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). https://doi.org/10.1137/1.9780898718003
Schwarz, G.: Hodge decomposition–a method for solving boundary value problems. No. 262 in Lecture Notes in Mathematics, 1607. Springer-Verlag, Berlin (1995)
Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88(3), 559–579 (2001). https://doi.org/10.1007/s211-001-8015-y
Vassilevski, P.S., Wang, J.P.: Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer. Math. 63(4), 503–520 (1992). https://doi.org/10.1007/BF01385872
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). https://doi.org/10.1137/1034116
Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56(3), 215–235 (1996). https://doi.org/10.1007/BF02238513. International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)
Xu, J.: Fast Poisson-based solvers for linear and nonlinear PDEs. In: Proceedings of the International Congress of Mathematicians. Volume IV, pp. 2886–2912. Hindustan Book Agency, New Delhi (2010)
Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for \(H({\rm grad})\), \(H({\rm curl})\), and \(H({\rm div})\) systems on graded and unstructured grids. In: Multiscale, nonlinear and adaptive approximation, pp. 599–659. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03413-8_14
Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15(3), 573–597 (2002). https://doi.org/10.1090/S0894-0347-02-00398-3
Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591–721 (2017). https://doi.org/10.1017/S0962492917000083
Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33, 391–398 (2009)
Zikatanov, L.T.: Two-sided bounds on the convergence rate of two-level methods. Numer. Linear Algebra Appl. 15(5), 439–454 (2008). https://doi.org/10.1002/nla.556
Acknowledgements
We would like to thank Professors Jinchao Xu and Ludmil Zikatanov for stimulating discussions about iterative methods of singular linear systems.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Doug Arnold.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, Y. Nodal Auxiliary Space Preconditioning for the Surface de Rham Complex. Found Comput Math 24, 1019–1048 (2024). https://doi.org/10.1007/s10208-023-09611-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-023-09611-0
Keywords
- Surface de Rham complex
- Hiptmair–Xu preconditioner
- Multigrid
- Hodge–Laplace equation
- Harmonic vector field