Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inversion and assessment of swell waveheights from HF radar spectra in the Iroise Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

As an extension of previous work in Wang et al. (Ocean Dyn 64:1447–1456, 2014), this article presents significant waveheights of swell inverted from a 13 month dataset of two high-frequency (HF) phased array radars. As an important intermediate variable in the calculation of significant waveheights, relative swell directions obtained by two different methods from a single radar station are also presented. The impact of the inaccuracy of relative swell direction on the calculation of waveheight is investigated and an alternative way of using constant swell direction is proposed. Radar-inverted swell significant waveheights using different ranges of relative swell directions are investigated. Results are assessed by WAVEWATCH III model hind casts. Analysis of the complete database shows that radar-inverted swell significant waveheights agree reasonably well with model estimates with large scatter. Standard deviation of the difference between the two estimations increases with waveheight, whereas the relative standard deviation, normalized by waveheight, keeps nearly constant. The constant direction scheme of waveheight inversion gives good estimations except for energetic swell exceeding the small perturbation assumption. Statistical analysis suggests that radar measurement uncertainty explains a considerable part of the difference between radar and model estimates. Swell estimates from both radar stations are consistent. This enables combined use of both radar spectra at common radar cells. Use of double spectra solves the ambiguity of relative swell direction, i.e., absolute swell direction is obtained, and effectively improves the accuracy of swell direction by the least-squares method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ardhuin F, Chapron B, Collard F (2009) Observation of swell dissipation across oceans. Geophys Res Lett 36:L06607. doi:10.1029/2008GL037030

    Article  Google Scholar 

  • Ardhuin F, Rogers E, Babanin AV et al (2010) Semi-empirical dissipation source functions for wind-wave models: part I, definition, calibration and validation. J Phys Oceanogr 40:1917–1941. doi:10.1175/2010JPO4324.1

    Article  Google Scholar 

  • Barrick DE (1972a) First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans Antennas Propag 20:2–10

    Article  Google Scholar 

  • Barrick DE (1972b) Remote sensing of sea state by radar. In: Derr VE (ed) Remote sensing of the troposphere. US Government Printing Office, Washington

    Google Scholar 

  • Barrick DE (1977) Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci 12(3):415–424

    Article  Google Scholar 

  • Barrick DE (1980) Accuracy of parameter extraction from sample-averaged sea-echo Doppler spectra. IEEE Trans Antennas Propag 28:1–11

    Article  Google Scholar 

  • Broche P (1979) Estimation du spectre directionnel des vagues par radar decametrique coherent. AGARD Conference on special topics in HF propagation, Proc. Lisbon, 28 May-1 June, 1979. AGARD-CP-263

  • Collard F, Ardhuin F, Chapron B (2009) Monitoring and analysis of ocean swell fields from space: new methods for routine observations. J Geophys Res 114:C07023. doi:10.1029/2008JC005215

    Article  Google Scholar 

  • Darbyshire J (1952) The generation of waves by wind. Proc R Soc London, Ser A 215(1122):299–328

    Article  Google Scholar 

  • Forget P, Broche P, de Maistre JC, Fontanel A (1981) Sea state frequency features observed by ground wave HF Doppler radar. Radio Sci 16(5):917–925. doi:10.1029/RS016i005p00917

    Article  Google Scholar 

  • Forget P, Broche P, Cuq F (1995) Principles of swell measurement by SAR with application to ERS-1 observations off the Mauritanian coast. Int J Remote Sens 16:2403–2422

    Article  Google Scholar 

  • Grosdidier S, Forget P, Barbin Y, Guerin CA (2014) HF bistatic ocean Doppler spectra: simulation versus experimentation. IEEE Trans Geosci Remote Sens 52(4):2138–2148. doi:10.1109/TGRS.2013.2258352

    Article  Google Scholar 

  • Gurgel KW, Antonischki G, Essen HH, Schlick T (1999) Wellen radar (WERA): a new ground-wave based HF radar for ocean remote sensing. Coast Eng 37:219–234

    Article  Google Scholar 

  • Hasselmann K (1971) Determination of ocean-wave spectra from Doppler radio return from the sea surface. Nat Phys Sci 229:16–17. doi:10.1038/physci229016a0

    Article  Google Scholar 

  • Hisaki Y (2006) Ocean wave directional spectra estimation from an HF ocean radar with a single antenna array: methodology. J Atmos Ocean Technol 23:268–286

    Article  Google Scholar 

  • Holt B, Liu AK, Wang DW, Gnanadesikan A, Chen HS (1998) Tracking storm-generated waves in the northeast Pacific Ocean with ERS-1 synthetic aperture radar imagery and buoys. J Geophys Res 103(C4):7917–7929

    Article  Google Scholar 

  • Ivonin DV, Shrira VI, Broche P (2006) On the singular nature of the second-order peaks in HF radar sea echo. IEEE J Ocean Eng 31(4):751–767

    Article  Google Scholar 

  • Jiang H, Chen G (2013) A global view on the swell and wind sea climate by the Jason-1 mission: a revisit. J Atmos Ocean Technol 30:1833–1841. doi:10.1175/JTECH-12-00180.1

    Article  Google Scholar 

  • Kudryavtsev VN, Makin VK (2004) Impact of swell on the marine atmospheric boundary layer. J Phys Oceanogr 34:934–949

    Article  Google Scholar 

  • Lipa BJ, Barrick DE (1980) Methods for the extraction of long-period ocean wave parameters from narrow beam HF radar sea echo. Radio Sci 15(4):843–853

    Article  Google Scholar 

  • Lipa BJ, Barrick DE (1986) Extraction of sea state from HF radar sea echo: mathematical theory and modeling. Radio Sci 21(1):81–100. doi:10.1029/RS021i001p00081

    Article  Google Scholar 

  • Lipa B, Nyden B (2005) Directional wave information from the SeaSonde. IEEE J Ocean Eng 30:221–231. doi:10.1109/JOE.2004.839929

    Article  Google Scholar 

  • Lipa BJ, Barrick DE, Maresca JW Jr (1981) HF radar measurements of long ocean waves. J Geophys Res 86(C5):4089–4102. doi:10.1029/JC086iC05p04089

    Article  Google Scholar 

  • Munk WH, Miller GR, Snodgrass FE, Barber NF (1963) Directional recording of swell from distant storms. Phil Trans R Soc London A255:505–584

    Article  Google Scholar 

  • Portilla J, Ocampo-Torres FJ, Monbaliu J (2009) Spectral partitioning and identification of wind sea and swell. J Atmos Ocean Technol 26:107–122. doi:10.1175/2008JTECHO609.1

    Article  Google Scholar 

  • Roland A, Ardhuin F (2014) On the developments of spectral wave models: numeric and parameterizations for the coastal ocean. Ocean Dyn 64(6):833–846. doi:10.1007/s10236-014-0711-z

    Article  Google Scholar 

  • Smedman A, Högström U, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) Observational study of marine atmospheric boundary layer characteristics during swell. J Atmos Sci 66:2747–2763. doi:10.1175/2009JAS2952.1

    Article  Google Scholar 

  • Snodgrass FE, Groves GW, Hasslemann KF, Miller GR, Munk WH, Powers WH (1966) Propagation of ocean swell across the Pacific. Phil Trans R Soc London A259:430–497

    Google Scholar 

  • Tolman HL (2008) A mosaic approach to wind wave modeling. Ocean Model 25:35–47. doi:10.1016/j.ocemod.2008.06.005

    Article  Google Scholar 

  • Wang W, Forget P, Guan C (2014) Inversion of swell frequency from a 1-year HF radar dataset collected in Brittany (France). Ocean Dyn 64(10):1447–1456. doi:10.1007/s10236-014-0759-9

    Article  Google Scholar 

  • Wyatt LR (1990) A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. Int J Remote Sens 11:1481–1494

    Article  Google Scholar 

  • Wyatt LR, Green JJ, Middleditch A (2011) HF radar data quality requirements for wave measurement. Coast Eng 58:327–336

    Article  Google Scholar 

Download references

Acknowledgments

Radar data were kindly provided by SHOM (Service Hydrographique et Océanographique de la Marine) thanks to the projects Previmer and EPIGRAM (funded under contract ANR-08-BLAN-0330). WAVEWATCH III wave model data was provided by the IOWAGA project funded by the ERC under grant number 240009. This study is supported by Minisitry of Science and Technology of China (No.2011BAC03B01), National Natural Science Foundation of China (No.41376010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Forget.

Additional information

Responsible Editor: Birgit Andrea Klein

Appendix A: The coupling coefficient

Appendix A: The coupling coefficient

The coupling coefficient Γ in the expression of the second-order sea echo (Eq. 2) is obtained from a perturbational solution of the nonlinear boundary conditions at the ocean surface, and is the sum of electromagnetic and hydrodynamic components, Γ H and Γ EM , respectively (E.g. Barrick 1977; Lipa and Barrick 1986). The expression of Γ is given by

$$ \varGamma ={\varGamma}_{EM}-i{\varGamma}_H $$
(A1)

with i is the imaginary number \( \sqrt{-1} \).

In deep-water condition, the two components are defined by

$$ {\varGamma}_{EM}=\frac{1}{2}\frac{\left({\overrightarrow{K}}_1\cdot {\overrightarrow{k}}_0\right)\left({\overrightarrow{K}}_2\cdot {\overrightarrow{k}}_0\right)/{k}_0^2-2{\overrightarrow{K}}_1\cdot {\overrightarrow{K}}_2}{\sqrt{{\overrightarrow{K}}_1\cdot {\overrightarrow{K}}_2}-{k}_0\varDelta } $$
(A2)
$$ {\varGamma}_H=\frac{1}{2}\Big[{K}_1+{K}_2-\frac{\left({K}_1{K}_2-{\overrightarrow{K}}_1\cdot {\overrightarrow{K}}_2\right)}{m_1{m}_2\sqrt{K_1{K}_2}}\frac{\omega^2+{\omega}_B^2}{\omega^2-{\omega}_B^2} $$
(A3)

with ω the angular Doppler frequency; Δ = 0.011 − 0.012i the impedance.

In shallow water condition, the electromagnetic component remains the same form, while the hydrodynamic component is related with water depth, given by

$$ {\varGamma}_H=\frac{1}{2}\left\{\begin{array}{l}{K}_1^{\prime }+{K}_2^{\prime }-\frac{\left({K}_1^{\prime }{K}_2^{\prime }-{\overrightarrow{K}}_1\cdot {\overrightarrow{K}}_2\right)}{m_1{m}_2\sqrt{K_1^{\prime }{K}_2^{\prime }}}\frac{\omega^2+{\omega}_B^2}{\omega^2-{\omega}_B^2}\\ {}\kern2em +\frac{\omega \left[{\left({m}_1\sqrt{g{K}_1^{\prime }}\right)}^3{\operatorname{csch}}^2\left({K}_1d\right)+{\left({m}_2\sqrt{g{K}_2^{\prime }}\right)}^3{\operatorname{csch}}^2\left({K}_2d\right)\right]}{g\left({\omega}^2-{\omega}^2\right)}\end{array}\right\} $$
(A4)

with K 1  = K 1 tanh(K 1 d), K 2  = K 2 tanh(K 2 d).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Forget, P. & Guan, C. Inversion and assessment of swell waveheights from HF radar spectra in the Iroise Sea. Ocean Dynamics 66, 527–538 (2016). https://doi.org/10.1007/s10236-016-0941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0941-3

Keywords