Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Spatial patterns and frequency distributions of regional deformation in the healthy human lung

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Understanding regional deformation in the lung has long attracted the medical community, as parenchymal deformation plays a key role in respiratory physiology. Recent advances in image registration make it possible to noninvasively study regional deformation, showing that volumetric deformation in healthy lungs follows complex spatial patterns not necessarily shared by all subjects, and that deformation can be highly anisotropic. In this work, we systematically study the regional deformation in the lungs of eleven human subjects by means of in vivo image-based biomechanical analysis. Regional deformation is quantified in terms of 3D maps of the invariants of the right stretch tensor, which are related to regional changes in length, surface and volume. Based on the histograms of individual lungs, we show that log-normal distributions adequately represent the frequency distribution of deformation invariants in the lung, which naturally motivates the normalization of the invariant fields in terms of the log-normal score. Normalized maps of deformation invariants allow for a direct intersubject comparison, as they display spatial patterns of deformation in a range that is common to all subjects. For the population studied, we find that lungs in supine position display a marked gradient along the gravitational direction not only for volumetric but also for length and surface regional deformation, highlighting the role of gravity in the regional deformation of normal lungs under spontaneous breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amelon RE, Cao K, Ding K, Christensen GE, Reinhardt JM, Raghavan ML (2011) Three-dimensional characterization of regional lung deformation. J Biomech 44(13):2489–2495

    Article  Google Scholar 

  • Amelon RE, Cao K, Reinhardt JM, Christensen GE, Raghavan ML (2014) A measure for characterizing sliding on lung boundaries. Ann Biomed Eng 42(3):642–650

    Article  Google Scholar 

  • Bodduluri S, Newell JD, Hoffman EA, Reinhardt JM (2013) Registration based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad Radiol 20(5):527–536

    Article  Google Scholar 

  • Cao K, Christensen GE, Ding K, Du K, Raghavan ML, Amelon RE, Baker KM, Hoffman Ea, Reinhardt JM (2012) Tracking regional tissue volume and function change in lung using image registration. Int J Biomed Imaging 2012(2):1–14

  • CGAL (2016) Computational geometry algorithms library. http://www.cgal.org

  • Choi S, Hoffman EA, Wenzel SE, Castro M, Fain SB, Jarjour NN, Schiebler ML, Chen K, Lin C-L (2015) Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol 118(10):1286–1298

    Article  Google Scholar 

  • Choi S, Hoffman Ea, Wenzel SE, Castro M, Lin C-L (2014) Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung volume variations in a multi-center asthmatic study. J Appl Physiol 117:593–603

    Article  Google Scholar 

  • Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, Lin CL (2013) Registration-based assessment of regional lung function via volumetric CT images of normal subjects versus severe asthmatics. J Appl Physiol 115(5):730–742

    Article  Google Scholar 

  • Christensen GE, Song JH, Lu W, El Naqa I, Low Da (2007) Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Med Phys 34:2155–2163

    Article  Google Scholar 

  • Eskandari M, Kuschner WG, Kuhl E (2015) Patient-specific airway wall remodeling in chronic lung disease. Ann Biomed Eng 43(10):2538–2551

    Article  Google Scholar 

  • Freed AD, Einstein DR (2012) Hypo-elastic model for lung parenchyma. Biomech Model Mechanobiol 11(3–4):557–573

    Article  Google Scholar 

  • Hoppin FG, Lee GC, Dawson SV (1975) Properties of lung parenchma in distorsion. J Appl Physiol 39(5):742–751

    Google Scholar 

  • Hurtado DE, Castro S, Gizzi A (2016a) Computational modeling of non-linear diffusion in cardiac electrophysiology: a novel porous-medium approach. Comput Methods Appl Mech Eng 300:70–83

    Article  MathSciNet  Google Scholar 

  • Hurtado DE, Henao D (2014) Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart. Comput Methods Appl Mech Eng 273:238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Hurtado DE, Villarroel N, Retamal J, Bugedo G, Bruhn AR (2016b) Improving the accuracy of registration-based biomechanical analysis: a finite-element approach to lung regional strain quantification. IEEE Trans Med Imaging 35(2):580–588

    Article  Google Scholar 

  • Jahani N, Choi S, Choi J, Iyer K, Hoffman EA, Lin C-L, Amelon R, Cao K, Ding K, Christensen GE, Reinhardt J, Raghavan M, Aznar M, Persson G, Kofoed I, Nygaard D, Korreman S, Bauman G, Eichinger M, Boldea V, Sharp G, Jiang S, Sarrut D, Choi S, Wenzel S, Castro M, Lin C, Tawhai M, Yin Y, Fain S, Jarjour N, Schiebler M, Chen K, Song J, Lu W, Naqa I, Low D, Bayouth J, Buatti J, Escolar J, Escolar A, Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H, Fuld M, Grout R, Guo J, Morgan J, Hankinson J, Odencrantz J, Fedan K, Ireland R, Bragg C, McJury M, Woodhouse N, Fichele S, van Beek E, Wild J, Hatton M, Iyer K, Zamba G, Jahani N, Miyawaki S, Newell J, Allmendinger T, Sieren J, Chan K, Noel C, Parikh P, Petersson J, Sánchez-Crespo A, Rohdin M, Montmerle S, Nyrén S, Jacobsson H, Larsson S, Lindahl S, Linnarsson D, Glenny R, Mure M, Bodas S, Rietzel E, Pan T, Chen G, Stocks J, Quanjer P, Voorhees A, An J, Berger K, Goldring R, Chen Q, White B, Zhao T, Lamb J, Wuenschel S, Bradley J, Low D, Wu D, Yang D, Deasy J, Hope A, Choi J, Zhang J, Ma J, Zhou S, Hubbs J, Wong T, Folz R, Evans E, Jaszczak R, Clough R, Marks L (2015) Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing. J Appl Physiol 119(10):1064–1074

    Article  Google Scholar 

  • Jahani N, Yin Y, Hoffman Ea, Lin CL (2014) Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration. J Biomech 47(7):1626–1633

    Article  Google Scholar 

  • Kaczka DW, Cao K, Christensen GE, Bates JHT, Simon Ba (2011) Analysis of regional mechanics in canine lung injury using forced oscillations and 3D image registration. Ann Biomed Eng 39(3):1112–1124

    Article  Google Scholar 

  • Lynch D, Newell JD (2009) Quantitative imaging of COPD. J Thorac Imaging 24(3):189–194

    Article  Google Scholar 

  • Mercer RR, Capo JD (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69(2):756–765

    Google Scholar 

  • Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21(3):749–759

    Google Scholar 

  • Modat M, Mcclelland J, Ourselin S (2010a) Lung registration using the NiftyReg package. In: Medical image analysis for the clinic: a grand challenge. In: Workshop proceedings from MICCAI, pp 33–42

  • Modat M, Ridgway GR, Taylor Za, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010b) Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed 98(3):278–284

    Article  Google Scholar 

  • Ogden RW (1984) Non-linear elastic deformations. Dover Publications Inc., New York

    MATH  Google Scholar 

  • Pace DF, Aylward SR, Niethammer M (2013) A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans Med Imaging 32(11):2114–2126

    Article  Google Scholar 

  • Paula LFSDC, Wellman TJ, Winkler T, Spieth PM, Güldner A, Venegas JG, Gama de Abreu M, Carvalho AR, Vidal Melo MF (2016) Regional tidal lung strain in mechanically ventilated normal lungs. J Appl Physiol 21(6):1335–1347

  • Rausch SMK, Haberthür D, Stampanoni M, Schittny JC, Wall Wa (2011a) Local strain distribution in real three-dimensional alveolar geometries. Ann Biomed Eng 39(11):2835–2843

    Article  Google Scholar 

  • Rausch SMK, Martin C, Bornemann PB, Uhlig S, Wall WA (2011b) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4(4):583–592

    Article  Google Scholar 

  • Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV (2008) Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal 12(6):752–763

    Article  Google Scholar 

  • Sotelo J, Urbina J, Valverde I, Tejos C, Irarrázaval P, Andia M, Uribe S, Hurtado DE (2016) 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. IEEE Trans Med Imaging 35(6):1475–1487

    Article  Google Scholar 

  • Sotelo JA, Urbina J, Valverde I, Tejos C, Irarrázaval P, Hurtado DE, Uribe S (2015) Quantification of wall shear stress using a finite-element method in multidimensional phase-contrast MR data of the thoracic aorta. J Biomech 48(10):1817–1827

    Article  Google Scholar 

  • Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190

    Article  Google Scholar 

  • Spaggiari E, Zompatori M, Verduri A, Chetta A, Bna C, Ormittu F, Sverzellati N, Rabaiotti E (2005) Early smoking-induced lung lesions in asymptomatic subjects. Correlations between high resolution dynamic CT and pulmonary function testing. La Radiol Med 109:27–39

    Google Scholar 

  • Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. In: Flugge S (ed) Handbuch der physik III/3. Springer, Berlin

    Google Scholar 

  • Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H, Venegas JG, Vidal Melo MF (2010) Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep. Crit Care Med 42(7):e491–e500

    Article  Google Scholar 

  • West JB (2011) Respiratory physiology. Lippincott Williams & Wilkins, Philadelphia

  • West JB (2012) Pulmonary pathophysiology. The essentials. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Yin Y, Hoffman EA, Lin C-L (2010) Lung lobar slippage assessed with the aid of image registration. Med Image Comput Comput Assist Interv MICCAI.. Int Conf Med Image Comput Comput Assist Interv 13(Pt 2):578–585

  • Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Pontificia Universidad Católica de Chile through the VRI Concurso Puente P1614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Hurtado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, D.E., Villarroel, N., Andrade, C. et al. Spatial patterns and frequency distributions of regional deformation in the healthy human lung. Biomech Model Mechanobiol 16, 1413–1423 (2017). https://doi.org/10.1007/s10237-017-0895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0895-5

Keywords