Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

LONI Visualization Environment

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Over the past decade, the use of informatics to solve complex neuroscientific problems has increased dramatically. Many of these research endeavors involve examining large amounts of imaging, behavioral, genetic, neurobiological, and neuropsychiatric data. Superimposing, processing, visualizing, or interpreting such a complex cohort of datasets frequently becomes a challenge. We developed a new software environment that allows investigators to integrate multimodal imaging data, hierarchical brain ontology systems, on-line genetic and phylogenic databases, and 3D virtual data reconstruction models. The Laboratory of Neuro Imaging visualization environment (LONI Viz) consists of the following components: a sectional viewer for imaging data, an interactive 3D display for surface and volume rendering of imaging data, a brain ontology viewer, and an external database query system. The synchronization of all components according to stereotaxic coordinates, region name, hierarchical ontology, and genetic labels is achieved via a comprehensive BrainMapper functionality, which directly maps between position, structure name, database, and functional connectivity information. This environment is freely available, portable, and extensible, and may prove very useful for neurobiologists, neurogenetisists, brain mappers, and for other clinical, pedagogical, and research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. AW Toga PM Thompson (2002) ArticleTitleNew approaches in brain morphometry Am J Geriatr Psychiatry 10 IssueID1 13–23 Occurrence Handle11790631 Occurrence Handle10.1176/appi.ajgp.10.1.13

    Article  PubMed  Google Scholar 

  2. AW Toga (2002) ArticleTitleImaging databases and neuroscience Neuroscience 8 IssueID5 423–436 Occurrence Handle10.1177/107385802236971

    Article  Google Scholar 

  3. R Woods (2003) ArticleTitleMultiTracer: a Java-based Tool for anatomic delineation of grayscale volumetric images NeuroImage 19 1829–1834 Occurrence Handle12948737 Occurrence Handle10.1016/S1053-8119(03)00243-X

    Article  PubMed  Google Scholar 

  4. DE Rex JQ Ma AW Toga (2003) ArticleTitleThe LONI pipeline processing environment NeuroImage 19 IssueID3 1033–1048 Occurrence Handle12880830 Occurrence Handle10.1016/S1053-8119(03)00185-X

    Article  PubMed  Google Scholar 

  5. AW Toga PM Thompson (2001) ArticleTitleMaps of the brain Anat Rec 265 IssueID2 37–53 Occurrence Handle11323769 Occurrence Handle1:STN:280:DC%2BD3MzlsFCrsA%3D%3D Occurrence Handle10.1002/ar.1057

    Article  PubMed  CAS  Google Scholar 

  6. J Mazziotta et al. (2001) ArticleTitleA probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) Philos Trans R Soc Lond B Biol Sci 356 IssueID1412 1293–1322 Occurrence Handle11545704 Occurrence Handle1:STN:280:DC%2BD3MvpvVChuw%3D%3D Occurrence Handle10.1098/rstb.2001.0915

    Article  PubMed  CAS  Google Scholar 

  7. T Kling-Petersen M Rydmark (1997) ArticleTitleThe BRAIN project: an interactive learning tool using desktop virtual reality on personal computers Stud Health Technol Inform 39 529–538 Occurrence Handle10168945 Occurrence Handle1:STN:280:DyaK2szosVaqtw%3D%3D

    PubMed  CAS  Google Scholar 

  8. A Caunce CJ Taylor (2001) ArticleTitleBuilding 3D sulcal models using local geometry Med Image Anal 5 IssueID1 69–80 Occurrence Handle11231178 Occurrence Handle1:STN:280:DC%2BD3MzjvFKhsQ%3D%3D Occurrence Handle10.1016/S1361-8415(00)00033-5

    Article  PubMed  CAS  Google Scholar 

  9. GG Ramos JFT Zenteno (2003) ArticleTitleCurrent concepts in neurogenetics Rev Invest Clin 55 IssueID2 207–215 Occurrence Handle1:CAS:528:DC%2BD3sXkvFChtrs%3D

    CAS  Google Scholar 

  10. E Boone B Jones (2003) ArticleTitleDevelopmental-behavior neurogenetics: early experience in inbred mice FASEB J 17 IssueID5 A1211

    Google Scholar 

  11. I Sutherland (1968) ArticleTitleA head-mounted three dimensional display Fall Joint Computer Conference, AFIPS Conf Proc 33 757–764

    Google Scholar 

  12. C Cruz-Neira (1993) ArticleTitleVirtual reality overview SIGGRAPH'93 23 1.1–1.18

    Google Scholar 

  13. AM Ba et al. (2002) ArticleTitleMultiwavelength optical intrinsic signal imaging of cortical spreading depression J Neurophysiol 88 IssueID5 2726–2735 Occurrence Handle12424307 Occurrence Handle10.1152/jn.00729.2001

    Article  PubMed  Google Scholar 

  14. A MacKenzie-Graham ES Jones DW Shattuck ID Dinov M Bota AW Toga (2003) ArticleTitleThe informatics of a C57BL/6J mouse brain atlas Neuroinformatics 1 IssueID4 397–410 Occurrence Handle15043223 Occurrence Handle10.1385/NI:1:4:397

    Article  PubMed  Google Scholar 

  15. A Mackenzie-Graham et al. (2001) ArticleTitleA multimodal, multidimensional atlas of the C57BL/6 mouse brain Soc Neurosci Abstr 27 IssueID1 1226

    Google Scholar 

  16. I Dinov D Valentino G Hu J Felix MS Mega S Ruffins D Rex AW Toga (2002) ArticleTitleConstruction and utilization of an interactive graphical data model: braingraph NeuroImage 13 433

    Google Scholar 

  17. M Bota HW Dong LW Swanson (2003) ArticleTitleFrom gene networks to brain networks Nat Neurosci 6 IssueID8 795–799 Occurrence Handle12886225 Occurrence Handle1:CAS:528:DC%2BD3sXlslOis7w%3D Occurrence Handle10.1038/nn1096

    Article  PubMed  CAS  Google Scholar 

  18. M Bota H Dong LW Swanson (2005) ArticleTitleBrain architecture management system Neuroinformatics 3 IssueID1 15–48 Occurrence Handle15897615 Occurrence Handle10.1385/NI:3:1:015

    Article  PubMed  Google Scholar 

  19. JBL Bard MA Kaufman C Dubreuil RM Brune A Burger RA Baldock DR Davidson (1998) ArticleTitleAn internet-accessible database of mouse developmental anatomy based on a systematic nomenclature Mech Dev 74 111–120 Occurrence Handle9651497 Occurrence Handle1:CAS:528:DyaK1cXktFKju7w%3D Occurrence Handle10.1016/S0925-4773(98)00069-0

    Article  PubMed  CAS  Google Scholar 

  20. A Riedel W Hartig G Seeger U Gartner K Brauer T Arendt (2002) ArticleTitlePrinciples of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling J Chem Neuroanat 23 75–104 Occurrence Handle11841914 Occurrence Handle1:STN:280:DC%2BD387ksl2huw%3D%3D Occurrence Handle10.1016/S0891-0618(01)00142-9

    Article  PubMed  CAS  Google Scholar 

  21. D Essen ParticleVan HA Drury S Joshi MI Miller (1998) ArticleTitleFunctional and structural mapping of human cerebral cortex: solutions are in the surfaces Proc Natl Acad Sci 95 788–795 Occurrence Handle9448242 Occurrence Handle10.1073/pnas.95.3.788

    Article  PubMed  Google Scholar 

  22. C Colby R Gattass CR Olson CG Gross (1988) ArticleTitleTopographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study J Comp Neurol 269 392–413 Occurrence Handle2453534 Occurrence Handle1:STN:280:DyaL1c3ivVCruw%3D%3D Occurrence Handle10.1002/cne.902690307

    Article  PubMed  CAS  Google Scholar 

  23. LW Swanson (1998) Brain Maps: Structure of the Rat Brain EditionNumber2nd ed. Elsvier Science Publishers BV Amsterdam

    Google Scholar 

  24. G Paxinos CRR Watson PC Emson (1980) ArticleTitleAche-stained horizontal sections of the rat-brain in stereotaxic coordinates J Neurosci Methods 3 IssueID2 129–149 Occurrence Handle6110810 Occurrence Handle1:STN:280:DyaL3M7kslSmtQ%3D%3D Occurrence Handle10.1016/0165-0270(80)90021-7

    Article  PubMed  CAS  Google Scholar 

  25. EC Crabtree MS Mesa C Linshield ID Dinov PM Thompson J Felix JL Cummings AW Toga (2000) ArticleTitleAlzheimer grey matter loss across time: unbiased assessment using a probabilistic Alzheimer brain atlas Soc Neurosci Abstr 26 294

    Google Scholar 

  26. ID Dinov et al. (2001) ArticleTitleConstruction of the first rest-state functional subvolume probabilistic atlas of normal variability in the elderly and demented brain Neurology 56 IssueID8 A248

    Google Scholar 

  27. G Tinhofer E Mayr H Noletmeier MM Syslo (Eds) (1990) Computational Graph Theory Springer-Verlag New York

    Google Scholar 

  28. JAX, http://www.informatics.jax.org/

  29. Entrez, http://www.ncbi.nlm.nih.gov/Entrez/

  30. GO, http://www.geneontology.org/#godatabase

  31. GenSat, http://www.gensat.org/makeconnection.jsp

  32. BAMS, http://brancusi.usc.edu/bkms/

  33. MS Mega ID Dinov P Thompson M Manese C Lindshield J Moussai N Tran K Olsen J Felix C Zoumalan RP Woods AW Toga JC Mazziotta (2005) ArticleTitleAutomated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas NeuroImage 26 IssueID4 1009–1018 Occurrence Handle15908234 Occurrence Handle10.1016/j.neuroimage.2005.03.031

    Article  PubMed  Google Scholar 

  34. MS Mega ID Dinov V Porter G Chow E Reback P Davoodi S O'Connor MF Carter J Felix H Amezcua JL Cummings ME Phelps AW Toga (2005) ArticleTitleMetabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose F 18 positron emission tomographic study Arch Neurol 62 721–728 Occurrence Handle15883258 Occurrence Handle10.1001/archneur.62.5.721

    Article  PubMed  Google Scholar 

  35. RP Woods et al. (1999) ArticleTitleCreation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data Hum Brain Mapp 8 IssueID2–3 73–79 Occurrence Handle10524595 Occurrence Handle1:STN:280:DyaK1Mvlt1ahtA%3D%3D Occurrence Handle10.1002/(SICI)1097-0193(1999)8:2/3<73::AID-HBM1>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  36. SOCR, http://www.socr.ucla.edu

  37. B Fischl AM Dale (2000) ArticleTitleMeasuring the thickness of the human cerebral cortex from magnetic resonance images Proc Natl Acad Sci U S A 97 IssueID20 11050–11055 Occurrence Handle10984517 Occurrence Handle1:CAS:528:DC%2BD3cXnt1ahtrg%3D Occurrence Handle10.1073/pnas.200033797

    Article  PubMed  CAS  Google Scholar 

  38. MS Mega et al. (2000) ArticleTitleCerebral correlates of psychotic symptoms in Alzheimer's disease J Neurol Neurosurg Psychiatry 69 IssueID2 167–171 Occurrence Handle10896687 Occurrence Handle1:STN:280:DC%2BD3cvgsFCnsQ%3D%3D Occurrence Handle10.1136/jnnp.69.2.167

    Article  PubMed  CAS  Google Scholar 

  39. RE Blanton et al. (2001) ArticleTitleMapping cortical asymmetry and complexity patterns in normal children Psychiatry Res 107 IssueID1 29–43 Occurrence Handle11472862 Occurrence Handle1:STN:280:DC%2BD3MvisFKmsw%3D%3D

    PubMed  CAS  Google Scholar 

  40. G Bartzokis et al. (2003) ArticleTitleWhite matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study Arch Neurol 60 IssueID3 393–398 Occurrence Handle12633151 Occurrence Handle10.1001/archneur.60.3.393

    Article  PubMed  Google Scholar 

  41. S Bookheimer (2002) ArticleTitleFunctional MRI of language: new approaches to understanding the cortical organization of semantic processing Annu Rev Neurosci 25 151–188 Occurrence Handle12052907 Occurrence Handle1:CAS:528:DC%2BD38XmtF2hsLo%3D Occurrence Handle10.1146/annurev.neuro.25.112701.142946

    Article  PubMed  CAS  Google Scholar 

  42. PM Thompson et al. (2003) ArticleTitleDynamics of gray matter loss in Alzheimer's disease J Neurosci 23 IssueID3 994–1005 Occurrence Handle12574429 Occurrence Handle1:CAS:528:DC%2BD3sXhtlOrt7Y%3D

    PubMed  CAS  Google Scholar 

  43. ER Sowell et al. (2001) ArticleTitleMapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation J Neurosci 21 IssueID22 8819–8829 Occurrence Handle11698594 Occurrence Handle1:CAS:528:DC%2BD3MXoslajtrc%3D

    PubMed  CAS  Google Scholar 

  44. RI Scahill et al. (2003) ArticleTitleA longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging Arch Neurol 60 IssueID7 989–994 Occurrence Handle12873856 Occurrence Handle10.1001/archneur.60.7.989

    Article  PubMed  Google Scholar 

  45. K Kasai et al. (2003) ArticleTitleProgressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: a longitudinal magnetic resonance imaging study Arch Gen Psychiatry 60 IssueID8 766–775 Occurrence Handle12912760 Occurrence Handle10.1001/archpsyc.60.8.766

    Article  PubMed  Google Scholar 

  46. PM Thompson et al. (2000) ArticleTitleGrowth patterns in the developing brain detected by using continuum mechanical tensor maps Nature 404 IssueID6774 190–193 Occurrence Handle10724172 Occurrence Handle1:CAS:528:DC%2BD3cXhvFOis7o%3D Occurrence Handle10.1038/35004593

    Article  PubMed  CAS  Google Scholar 

  47. CI Wright et al. (2003) ArticleTitleNovelty responses and differential effects of order in the amygdala, substantia innominata, and inferior temporal cortex NeuroImage 18 IssueID3 660–669 Occurrence Handle12667843 Occurrence Handle10.1016/S1053-8119(02)00037-X

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Many individuals have contributed to the development effort over the past several years that led to the design, implementation, debugging, and validation of the LONI Viz environment—most notably Seth W. Ruffins, Russell E. Jacobs, Jianming Hu, Jason Landerman, and Hui Wang was invaluable in the past four critical version releases. This research is supported by grants from NIA P50 AG16570, K08 AG100784; NLM R01 2R01 LM05639-06; NIH/NCRR 2 P41 RR13642 and NIH/NIMH 5 P01 MN52176, NSF DUE 0442992, NIH/NCBC U52 RR021813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo D. Dinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinov, I.D., Valentino, D., Shin, B.C. et al. LONI Visualization Environment. J Digit Imaging 19, 148–158 (2006). https://doi.org/10.1007/s10278-006-0266-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-006-0266-8

Key words