Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Statistical Approach for Breast Density Segmentation

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Studies reported in the literature indicate that the increase in the breast density is one of the strongest indicators of developing breast cancer. In this paper, we present an approach to automatically evaluate the density of a breast by segmenting its internal parenchyma in either fatty or dense class. Our approach is based on a statistical analysis of each pixel neighbourhood for modelling both tissue types. Therefore, we provide connected density clusters taking the spatial information of the breast into account. With the aim of showing the robustness of our approach, the experiments are performed using two different databases: the well-known Mammographic Image Analysis Society digitised database and a new full-field digital database of mammograms from which we have annotations provided by radiologists. Quantitative and qualitative results show that our approach is able to correctly detect dense breasts, segmenting the tissue type accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11

References

  1. American Cancer Society: Breast Cancer: Facts and Figures, 2003–04. Atlanta: ACS, 2003

  2. Australian Institute of Health and Welfare & National Breast Cancer Centre: Breast cancer in Australia: an overview. Cancer series. Canberra: AIHW, 2006, p. 34

  3. R2 ImageChecker. http://www.r2tech.com. Accessed 1 January 2007

  4. iCAD Second Look. http://www.icadmed.com. Accessed 1 January 2007

  5. Ho WT, Lam PWT: Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities. Clin Radiol 58:133–136, 2003

    Article  CAS  PubMed  Google Scholar 

  6. Obenauer S, Sohns C, Werner C, Grabbe E: Impact of breast density on computer-aided detection in full-field digital mammography. J Digit Imaging 19(3):258–263, 2006

    Article  PubMed  Google Scholar 

  7. Brem RF, Hoffmeister JW, Rapelyea JA, Zisman G, Mohtashemi K, Jindal G, DiSimio MP, Rogers SK: Impact of breast density on computer-aided detection for breast cancer. Am J Roentgenol 184(2):439–444, 2005

    Google Scholar 

  8. Wolfe JN: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492, 1976

    Article  CAS  PubMed  Google Scholar 

  9. Freixenet J, Oliver A, Martí R, Lladó X, Pont J, Pérez E, Denton ERE, Zwiggelaar R: Eigendetection of masses considering false positive reduction and breast density information. Med Phys 35(5):1840–1853, 2008

    Article  PubMed  Google Scholar 

  10. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ: Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J Natl Cancer Inst 87:670–675, 1995

    Article  CAS  PubMed  Google Scholar 

  11. Sivaramakrishna R, Obuchowski NA, Chilcote WA, Powell KA: Automatic segmentation of mammographic density. Acad Radiol 8(3):250–256, 2001

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari RJ, Rangayyan RM, Borges RA, Frere AF: Segmentation of the fibro-glandular disc in mammograms via Gaussian mixture modelling. Med Biol Eng Comput 42:378–387, 2004

    Article  CAS  PubMed  Google Scholar 

  13. Aylward SR, Hemminger BH, Pisano ED: Mixture modelling for digital mammogram display and analysis. Int Work Dig Mammography 305–312, 1998

  14. Saha PK, Udupa JK, Conant EF, Chakraborty P, Sullivan D: Breast tissue density quantification via digitized mammograms. IEEE Trans Med Imag 20(8):792–803, 2001

    Article  CAS  Google Scholar 

  15. Zwiggelaar R, Denton ERE: Optimal segmentation of mammographic images. In Int Work Dig Mammography 751–757, 2004

  16. Petroudi S, Brady M: Breast density segmentation using texture. Lect Not Comp Sc 4046:609–615, 2006

    Article  Google Scholar 

  17. Suckling J, Parker J, Dance DR, Astley SM, Hutt I, Boggis CRM, Ricketts I, Stamatakis E, Cerneaz N, Kok SL, Taylor P, Betal D, Savage J: The Mammographic Image Analysis Society digital mammogram database. Int Work Dig Mammography 211–221, 1994

  18. Martí R, Oliver A, Raba D, Freixenet J: Breast skin-line segmentation using contour growing. In Lect Not Comp Sc 4478:564–571, 2007

    Article  Google Scholar 

  19. Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard MT: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans Med Imag 23(9):1129–1140, 2004

    Article  Google Scholar 

  20. Turk MA, Pentland AP: Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86, 1991

    Article  Google Scholar 

  21. Belhumeur PN, Hespanha JP, Kriegman DJ: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intel 19(7):711–720, 1997

    Article  Google Scholar 

  22. Dice LR: Measures of the amount of ecologic association between species. Ecology 26:297–302, 1945

    Article  Google Scholar 

  23. McGill R, Tukey JW, Larsen WA: Variation of boxplots. Am Stat 32:12–16, 1978

    Article  Google Scholar 

  24. Snoeren PR, Karssemeijer N: Gray-scale and geometric registration of full-field digital and film-screen mammograms. Med Image Anal 11(2):146–156, 2007

    Article  PubMed  Google Scholar 

  25. Pun T: Entropy thresholding: a new approach. Comput Vis Graph Image Process 16:210–239, 1981

    Article  Google Scholar 

  26. Ridler TW, Calvard S: Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):629–632, 1978

    Google Scholar 

  27. Kopans D: Breast Imaging, Philadelphia: Lippincott-Raven, 1998

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Educación y Ciencia of Spain under Grant TIN2007-60553, by the UdG under Grant IdIBGi-UdG and by CIRIT and CUR of DIUiE of Generalitat de Catalunya under Grant 2008SALUT00029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnau Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, A., Lladó, X., Pérez, E. et al. A Statistical Approach for Breast Density Segmentation. J Digit Imaging 23, 527–537 (2010). https://doi.org/10.1007/s10278-009-9217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-009-9217-5

Key words