Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Staining Correction in Digital Pathology by Utilizing a Dye Amount Table

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The stained colors of the tissue components are popularly used as features for image analysis. However, variations in the staining condition of the histology slides prompt variations to the color distribution of the stained tissue samples which could impact the accuracy of the analysis. In this paper, we present a method to correct the staining condition of a histology image. In the method, a look-up table (LUT) based on the dye amounts absorbed by the sample is built. The LUT can be built when either (i) the source and reference staining conditions are specified or (ii) when the user simply wants to recreate his/her preferred staining condition without specifying any reference slide. The effectiveness of the present method was evaluated in two aspects: (i) CIELAB color difference of nuclei, cytoplasm, and red blood cells, between the ten different slides of liver tissue, and (ii) classification of the different tissue components. Application of the present staining correction method reduced the color difference between the slides by an average factor of 9.8 and the classification performance of a linear discriminant classifier improved by 16.5 % on the average. Results of the paired t test statistical analysis further showed that the reduction in the CIELAB color difference between the slides and the improvement in the classifier’s performance when staining correction was implemented is significant at p < 0.001.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
FIg. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yeh FC, Parwani AV, Pantanowitz L, Ho C: Automated grading of renal cell carcinoma using whole slide imaging. J Pathol Inform 4(5):23, 2014

    Google Scholar 

  2. Rizzardi AE, Johnson AT, Vogel RI, et al: Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol 7:42, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ghaznavi F, Evans A, Madabhushi A, Feldman M: Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol 8:331–359, 2013

    Article  CAS  PubMed  Google Scholar 

  4. Walkowski S, Szymas J: Histopathologic patterns of nervous system tumors based on computer vision methods and whole slide imaging (WSI). Anal Cell Pathol 35(2):117–122, 2012

    Article  Google Scholar 

  5. Abe T, Hashiguchi A, Yamazaki K, Ebinuma H, Saito H, Kumada H, et al: Quantification of collagen and elastic fibers using whole slide images of liver biopsy specimens”. Pathol Int 63:305–310, 2013

    Article  PubMed  Google Scholar 

  6. Ficsor L, Varga VS, Tagscherer A, Tulassay Z, Molnar B: Automated classification of inflammation in colon histological sections based on digital microscopy and advanced image analysis. Cytom A 73(3):230–237, 2008

    Article  Google Scholar 

  7. Karaçali B, Tözeren A: Automated detection of regions of interest for tissue microarray experiments: an image texture analysis. BMC Med Imaging 7:2, 2007

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tuominen VJ, Tolonen TT, Isola J: ImmunoMembrane: a publicly available web application for digital image analysis of HER2 immunohistochemistry. Histopathology 60(5):758–767, 2012

    Article  PubMed  Google Scholar 

  9. He L, Long LR, Antani S, Thoma GR: Histology image analysis for carcinoma detection and grading. Comput Methods Prog Biomed 107(3):538–556, 2012

    Article  Google Scholar 

  10. Basavanhally AN, Ganesan S, Agner S, et al: Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancerhistopathology. IEEE Trans Biomed Eng 57(3):642–653, 2010

    Article  PubMed  Google Scholar 

  11. Bahlmann C, Patel A, Johnson J, Ni J, et al: Automated Detection of Diagnostically Relevant Regions in H&E Stained Digital Pathology Slides, Proc. SPIE 8315, Medical Imaging: Computer-Aided Diagnosis, February 23, 2012. doi:10.1117/12.912484

  12. Pham N-A, Morrison A, Schwock J, Aviel-Ronen S, et al: Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn Pathol 2:8, 2007

    Article  PubMed Central  PubMed  Google Scholar 

  13. McCann MT, Bhagavatula R, Fickus MC, et al: Automated colitis detection from endoscopic biopsies as a tissue screening tool in diagnostic pathology Image Processing (ICIP), 2012 19th IEEE International Conference on September 30, 2012–October 3, 2012. doi:10.1109/ICIP.2012.6467483

  14. Bautista PA, Abe T, Yamaguchi M, et al: Digital staining of pathological images: dye amount correction for improved classification performance. Proc. SPIE Medical Imaging: Computer-Aided Diagnosis, March 30, 2007. doi:10.1117/12.710446

  15. Abe T, Murakami Y, Yamaguchi M, et al: Color correction of pathological images based on dye amount quantification. Opt Rev 12:293–300, 2005

    Article  Google Scholar 

  16. Kuru K:“ Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode”, Theor Biol Med Model, Feb 6, 2014. doi:10.1186/1742-4682-11-9

  17. Murakami Y, Abe T, Hashiguchi A, Yamaguchi M, Saito A, Sakamoto M: Color correction for automatic fibrosis quantification in liver biopsy specimen. J Pathol Inform 4:36, 2013

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kothari S, Phan JH, Moffitt RA, Stokes TH, et al: Automatic Batch- Invariant Color Segmentation of Histological Cancer Images. Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on March 30, 2011–April 2, 2011. doi:\10.1109/ISBI.2011.5872492

  19. Basavanhally A, Madabhushi A: EM-Based Segmentation-Driven Color Standardization of Digitized Histopathology. Proc. SPIE 8676, Medical Imaging 2013: Digital Pathology, 86760G, March 29, 2013. doi:10.1117/12.2007173

  20. Niethammer M, Borland D, Marron JS, et al: Appearance normalization of histology slides. Mach Learn Med Imaging Lect Notes Comput Sci Vol 6357:58–66, 2010

    Article  Google Scholar 

  21. Khan AM, Rajpoot N, Treanor D, Magee D: Nonlinear mapping approach to stain normalization in digital histopathology images using image-specificcolor deconvolution. IEEE Trans Biomed Eng 61(6):1729–1738, 2014

    Article  PubMed  Google Scholar 

  22. Magee D, Treanor D, Crellin D, et al: Colour Normalization in Digital Histopathology Images. Proc. Opt. Tissue Image Anal. Microsc., Histopathol. Endosc.,100–111, 2009

  23. Ruifok AC, Johnston DA: Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299, 2001

    Google Scholar 

  24. Srivastava S, Ha TH, Delp EJ, Allebach JP: Generating Optimal Look-up Tables to achieve complex color space transformations ,Image Processing (ICIP), 2009 16th IEEE International Conference on 1641–1644, 2009

  25. Bautista PA, Yagi Y: Multispectral enhancement method to increase the visual differences of tissue structures in stained histopathology image. Anal Cell Pathol 35((5-6)):407–420, 2012

    Article  Google Scholar 

  26. Matlab Technical Computing Version R2008a

  27. Wyszecki G, Stiles WS: Color science concepts and methods quantitative data and formulae, 2nd edition. Wiley, New York, 1982

    Google Scholar 

  28. Zhang H, Liu H, Quan S: Hue constrained matrix optimization for preferred color reproduction. J Electron Imaging 21(3):033021, 2012

    Article  Google Scholar 

  29. Bautista PA, Hashimoto N, Yagi Y: Color standardization in whole slide imaging using a color calibration slide. J Pathol Inf 5:4, 2014

    Article  Google Scholar 

  30. Bautista PA, Yagi Y: Improving the visualization of tissue folds in whole slide images through color enhancement, J Pathol Inform, November 29, 2010. doi:10.4103/2153-3539.73320

  31. Badano A, Revie C, Casertano A, ChengWC, et al: Consistency and standardization in medical imaging: a consensus report. J Digit Imaging, 2014. doi:10.1007/s10278-014-9721-0

  32. Yagi Y: Color standardization and optimization in whole slide imaging. Diagn Pathol 6(Suppl 1):S15, 2011

    Article  PubMed Central  PubMed  Google Scholar 

  33. Shrestha P, Hulsken B: Color accuracy and reproducibility in whole slide imaging scanners. Proc. SPIE Medical Imaging: Digital Pathology, March 20, 2014. doi:10.1117/12.2048769

  34. Hashimoto N, Bautista PA, Yamaguchi M, Ohyama N, Yagi Y: Referenceless image quality evaluation for whole slide imaging. J Pathol Inform 3:9, 2012

    Article  PubMed Central  PubMed  Google Scholar 

  35. Johnson JP, Krupinski EA, Yan M, et al: Using a visual discrimination model for the detection of compression artifacts in virtual pathology images. IEEE Trans Med Imaging 30(2):306–314, 2011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinky A. Bautista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista, P.A., Yagi, Y. Staining Correction in Digital Pathology by Utilizing a Dye Amount Table. J Digit Imaging 28, 283–294 (2015). https://doi.org/10.1007/s10278-014-9766-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9766-0

Keywords