Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization of Image Quality and Dose in Digital Mammography

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Nowadays, the optimization in digital mammography is one of the most important challenges in diagnostic radiology. The new digital technology has introduced additional elements to be considered in this scenario. A major goal of mammography is related to the detection of structures on the order of micrometers (μm) and the need to distinguish the different types of tissues, with very close density values. The diagnosis in mammography faces the difficulty that the breast tissues and pathological findings have very close linear attenuation coefficients within the energy range used in mammography. The aim of this study was to develop a methodology for optimizing exposure parameters of digital mammography based on a new Figure of Merit: FOM ≡ (IQFinv)2/AGD, considering the image quality and dose. The study was conducted using the digital mammography Senographe DS/GE, and CDMAM and TORMAM phantoms. The characterization of clinical practice, carried out in the mammography system under study, was performed considering different breast thicknesses, the technical parameters of exposure, and processing options of images used by the equipment’s automatic exposure system. The results showed a difference between the values of the optimized parameters and those ones chosen by the automatic system of the mammography unit, specifically for small breast. The optimized exposure parameters showed better results than those obtained by the automatic system of the mammography, for the image quality parameters and its impact on detection of breast structures when analyzed by radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA—International Atomic Energy Agency: Optimization of the Radiological Protection of Patients: Image Quality and Dose in Mammography (coordinated research in Europe). At Energy 1–83, 2005.

  2. IAEA—International Atomic Energy Agency: Quality Assurance Programme for Digital Mammography. Vienna, 2011

  3. Ranger NT, Lo JY, Samei E: A technique optimization protocol and the potential for dose reduction in digital mammography. Med Phys 37:962–969, 2010. doi:10.1118/1.3276732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furquim TC, Nersissian DY: Studies of dose optimization and image quality in technological transition in mammography. Rev Bras Fis Médica 4:11–14, 2011

    Google Scholar 

  5. Fernandez JM, Ordiales JM, Guibelalde E, Prieto C, Vaño E: Physical image quality comparison of four types. Radiat Prot Dosim 129:140–143, 2008

    Article  CAS  Google Scholar 

  6. Berns EA, Hendrick RE, Cutter GR: Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose. Med Phys 30:334–340, 2003. doi:10.1118/1.1544674

    Article  PubMed  Google Scholar 

  7. Aichinger H, Dierker J, Joice-Barfuss S, Säbel M: Radiation Exposure and Image Quality in X-Ray DIAGNOSTIC RADIology, 2nd ed., Berlin: Springer, 2012

  8. Neitzel U, Buhr E, Hilgers G, Granfors PR: Determination of the modulation transfer function using the edge method: influence of scattered radiation. Med Phys 31:3485–3491, 2004. doi:10.1118/1.1813872

    Article  PubMed  Google Scholar 

  9. García-Mollá R, Linares R, Ayala R: A study of DQE dependence with beam quality, GE Senographe essential detector for mammography. IFMBE Proc 25:886–889, 2009. doi:10.1007/978-3-642-03879-2-248

    Article  Google Scholar 

  10. Neitzel U, Gunther-Kohfahl S, Borasi G, Samei E: Determination of the detective quantum efficiency of a digital X-ray detector: comparison of three evaluations using a common image data set. Med Phys 31:2205–2211, 2004. doi:10.1118/1.1766421

    Article  PubMed  Google Scholar 

  11. Salazar AJ, Romero J, Bernal O, Moreno A, Velasco S, Díaz X: Evaluation of low-cost telemammography screening configurations: a comparison with film-screen readings in vulnerable areas. J Digit Imaging 27:679–686, 2014. doi:10.1007/s10278-014-9695-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Séradour B, Heid P, Estève J: Comparison of direct digital mammography, computed radiography, and film-screen in the French National Breast Cancer Screening Program. Am J Roentgenol 202:229–236, 2014. doi:10.2214/AJR.12.10419

    Article  Google Scholar 

  13. Souza FH, Wendland EM, Rosa MI, Polanczyk CA: Is full-field digital mammography more accurate than screen-film mammography in overall population screening? A systematic review and meta-analysis. Breast 22:217–224, 2013. doi:10.1016/j.breast.2013.02.013

    Article  PubMed  Google Scholar 

  14. Lewin JM, Hendrick RE, D’Orsi CJ, Isaacs PK, Moss LJ, Karellas A, Sisney G a, Kuni CC, Cutter GR: Comparison of full-field digital mammography with screen-film mammography for cancer detection: results of 4,945 paired examinations. Radiology 218:873–880, 2001. doi:10.1148/radiology.218.3.r01mr29873

    Article  CAS  PubMed  Google Scholar 

  15. Lowes S, Liyanage U, Holmes CE, Sibal N, McLean L: Detection of microcalcifications during breast screening: a comparison of digital versus screen-film mammography. Clin Radiol 68:S1–S57, 2013. doi:10.1016/j.crad.2013.05.034

    Article  Google Scholar 

  16. Berg WA, Blume JD, Cormack JB, Ellen B, Lehrer D, Böhm-vélez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM: Combined screening with ultrasound and mammography compared to mammography alone in women at elevated risk of breast cancer: results of the first-year screen in ACRIN 6666. Jama 299:2151–2163, 2008. doi:10.1001/jama.299.18.2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW: Breast cancer screening with imaging: recommendations from the society of breast imaging and the acr on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7:18–27, 2010. doi:10.1016/j.jacr.2009.09.022

    Article  PubMed  Google Scholar 

  18. U.S. Preventive Services Task Force: Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. In: Ann Intern Med. Philadelphia, pp 716–726, 2009

  19. Kolb TM, Lichy J, Newhouse JH: Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175, 2002. doi:10.1148/radiol.2251011667

    Article  PubMed  Google Scholar 

  20. Nelson HD, O’Meara ES, Kerlikowske K, Balch S, Miglioretti D: Factors associated with rates of false-positive and false-negative results from digital mammography screening: an analysis of registry data. Ann Intern Med 164:226–235, 2016. doi:10.7326/M15-0971

    Article  PubMed  PubMed Central  Google Scholar 

  21. Le MT, Mothersill CE, Seymour CB, McNeill FE: Is the false-positive rate in mammography in North America too high? Br J Radiol 89:20160045, 2016. doi:10.1259/bjr.20160045

    Article  PubMed  Google Scholar 

  22. Mahoney MC, Meganathan K: False positive marks on unsuspicious screening mammography with computer-aided detection. J Digit Imaging 24:772–777, 2011. doi:10.1007/s10278-011-9389-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Payne JI, Martin T, Caines JS, Duggan R: The burden of false-positive results in analog and digital screening mammography: experience of the Nova Scotia breast screening program. Can Assoc Radiol J 65:315–320, 2014. doi:10.1016/j.carj.2014.03.002

    Article  PubMed  Google Scholar 

  24. Singh D, Pitkäniemi J, Malila N, Anttila A: Cumulative risk of false positive test in relation to breast symptoms in mammography screening: a historical prospective cohort study. Breast Cancer Res Treat 159:305–313, 2016. doi:10.1007/s10549-016-3931-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bolejko A, Zackrisson S, Hagell P, Wann-Hansson C: A roller coaster of emotions and sense—coping with the perceived psychosocial consequences of a false-positive screening mammography. J Clin Nurs 23:2053–2062, 2013. doi:10.1111/jocn.12426

    Article  PubMed  Google Scholar 

  26. Borg M, Badr I, Royle GJ: The use of a figure-of-merit (FOM) for optimisation in digital mammography: a literature review. Radiat Prot Dosim 151:1–8, 2012. doi:10.1093/rpd/ncr465

    Article  Google Scholar 

  27. Niimi T, Imai K, Maeda H, Ikeda M: Information loss in visual assessments of medical images. Eur J Radiol 61:362–366, 2007. doi:10.1016/j.ejrad.2006.09.009

    Article  PubMed  Google Scholar 

  28. Fletcher-Heath L: Quantifying the performance of human and software CDMAM phantom image observers for the qualification of digital mammography systems. Proc SPIE 5745:486–498, 2005. doi:10.1117/12.595510

    Article  Google Scholar 

  29. Chen B, Wang Y, Sun X, Guo W, Zhao M, Cui G, Hu L, Li P, Ren Y, Feng J, Yu J: Analysis of patient dose in full field digital mammography. Eur J Radiol 81:868–872, 2012. doi:10.1016/j.ejrad.2011.02.027

    Article  PubMed  Google Scholar 

  30. Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G: Evaluating the Figure of Merit in mammography utilizing Monte Carlo simulation. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 580:493–496, 2007. doi:10.1016/j.nima.2007.05.197

    Article  CAS  Google Scholar 

  31. Toroi P, Zanca F, Young KC, van Ongeval C, Marchal G, Bosmans H: Experimental investigation on the choice of the tungsten/rhodium anode/filter combination for an amorphous selenium-based digital mammography system. Eur Radiol 17:2368–2375, 2007. doi:10.1007/s00330-006-0574-x

    Article  PubMed  Google Scholar 

  32. Koutalonis M, Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G: Contrast-to-noise ratio in magnification mammography: a Monte Carlo study. Phys Med Biol 52:3185–3199, 2007. doi:10.1088/0031-9155/52/11/017

    Article  CAS  PubMed  Google Scholar 

  33. Nishino TK, Wu X, Johnson RF: Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography. Am J Roentgenol 185:960–963, 2005. doi:10.2214/AJR.04.1489

    Article  Google Scholar 

  34. Samei E, Flynn MJ: An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30:608–622, 2003. doi:10.1118/1.1561285

    Article  PubMed  Google Scholar 

  35. General Electric Medical Systems: Senographe DS Acquisition System 0459. Operator Manual 2385062–100. Revision 2, 2004

  36. European Commission: European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. Luxembourg, 2006

  37. Noether GE: Introduction to Statistics: The Nonparametric Way. Springer, New York, 1991

    Book  Google Scholar 

  38. Karssemeijer N, Thijssen MAO: Determination of contrast-detail curves of mammography systems by automated image analysis. In: International Workshop on Digital Mammography. Chicago 3:155–160, 1996

  39. Van der Burght R, Thijssen M, Bijkerk R: Manual contrast-detail phantom CDMAM 3.4 & CDMAM Analyser software V1.2., 2009

  40. NHSBSP Equipment Report: Commissioning and Routine Testing of Full Field Digital Mammography Systems. London, 2009

  41. European Commission: European Protocol on Dosimetry in Mammography. EUR 1623 EN, 1996

  42. Dance DR, Skinner CL, Young KC, Becktt JR, Kotre CJ: Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240, 2000

    Article  CAS  PubMed  Google Scholar 

  43. Cowen AR, Brettle DS, Coleman NJ, Parkin GJS: A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality control test object. Br J Radiol 65:528–535, 1992

    Article  CAS  PubMed  Google Scholar 

  44. Kotre CJ, Birch IP: Phase contrast enhancement of X-ray mammography: a design study. Phys Med Biol 44:2853–2866, 1999

    Article  CAS  PubMed  Google Scholar 

  45. Siegel S, Castellan NJ: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York, 1988

    Google Scholar 

  46. Tiwari M, Gupta B, Shrivastava M: High-speed quantile-based histogram equalisation for brightness preservation and contrast enhancement. IET Image Process 9:80–89, 2015. doi:10.1049/iet-ipr.2013.0778

    Article  Google Scholar 

  47. Hongbo Y, Xia H: Histogram modification using grey-level co-occurrence matrix for image contrast enhancement. IET Image Process 8:782–793, 2014. doi:10.1049/iet-ipr.2013.0657

    Article  Google Scholar 

  48. Ewert U, Heyne K, Zscherpel U, Jechow M, Bavendiek K: Optimum exposure conditions for computed radiography depending on fixed pattern noise and efficiency of imaging plate-scanner systems. AIP Conf Proc 30:493–500, 2011. doi:10.1063/1.3591892

    Article  Google Scholar 

  49. Gonzalez RC, Woods RE: Digital Image Processing, 3rd ed. Pearson Education, 2008

  50. Pascoal A, Lawinski CP, Honey I, Blake P: Evaluation of a software package for automated quality assessment of contrast detail images—comparison with subjective visual assessment. Phys Med Biol 50:5743–5757, 2005. doi:10.1088/0031-9155/50/23/023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes M. F. Fausto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fausto, A.M.F., Lopes, M.C., de Sousa, M.C. et al. Optimization of Image Quality and Dose in Digital Mammography. J Digit Imaging 30, 185–196 (2017). https://doi.org/10.1007/s10278-016-9928-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-016-9928-3

Keywords