Abstract
Nowadays, the optimization in digital mammography is one of the most important challenges in diagnostic radiology. The new digital technology has introduced additional elements to be considered in this scenario. A major goal of mammography is related to the detection of structures on the order of micrometers (μm) and the need to distinguish the different types of tissues, with very close density values. The diagnosis in mammography faces the difficulty that the breast tissues and pathological findings have very close linear attenuation coefficients within the energy range used in mammography. The aim of this study was to develop a methodology for optimizing exposure parameters of digital mammography based on a new Figure of Merit: FOM ≡ (IQFinv)2/AGD, considering the image quality and dose. The study was conducted using the digital mammography Senographe DS/GE, and CDMAM and TORMAM phantoms. The characterization of clinical practice, carried out in the mammography system under study, was performed considering different breast thicknesses, the technical parameters of exposure, and processing options of images used by the equipment’s automatic exposure system. The results showed a difference between the values of the optimized parameters and those ones chosen by the automatic system of the mammography unit, specifically for small breast. The optimized exposure parameters showed better results than those obtained by the automatic system of the mammography, for the image quality parameters and its impact on detection of breast structures when analyzed by radiologists.








Similar content being viewed by others
References
IAEA—International Atomic Energy Agency: Optimization of the Radiological Protection of Patients: Image Quality and Dose in Mammography (coordinated research in Europe). At Energy 1–83, 2005.
IAEA—International Atomic Energy Agency: Quality Assurance Programme for Digital Mammography. Vienna, 2011
Ranger NT, Lo JY, Samei E: A technique optimization protocol and the potential for dose reduction in digital mammography. Med Phys 37:962–969, 2010. doi:10.1118/1.3276732
Furquim TC, Nersissian DY: Studies of dose optimization and image quality in technological transition in mammography. Rev Bras Fis Médica 4:11–14, 2011
Fernandez JM, Ordiales JM, Guibelalde E, Prieto C, Vaño E: Physical image quality comparison of four types. Radiat Prot Dosim 129:140–143, 2008
Berns EA, Hendrick RE, Cutter GR: Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose. Med Phys 30:334–340, 2003. doi:10.1118/1.1544674
Aichinger H, Dierker J, Joice-Barfuss S, Säbel M: Radiation Exposure and Image Quality in X-Ray DIAGNOSTIC RADIology, 2nd ed., Berlin: Springer, 2012
Neitzel U, Buhr E, Hilgers G, Granfors PR: Determination of the modulation transfer function using the edge method: influence of scattered radiation. Med Phys 31:3485–3491, 2004. doi:10.1118/1.1813872
García-Mollá R, Linares R, Ayala R: A study of DQE dependence with beam quality, GE Senographe essential detector for mammography. IFMBE Proc 25:886–889, 2009. doi:10.1007/978-3-642-03879-2-248
Neitzel U, Gunther-Kohfahl S, Borasi G, Samei E: Determination of the detective quantum efficiency of a digital X-ray detector: comparison of three evaluations using a common image data set. Med Phys 31:2205–2211, 2004. doi:10.1118/1.1766421
Salazar AJ, Romero J, Bernal O, Moreno A, Velasco S, Díaz X: Evaluation of low-cost telemammography screening configurations: a comparison with film-screen readings in vulnerable areas. J Digit Imaging 27:679–686, 2014. doi:10.1007/s10278-014-9695-y
Séradour B, Heid P, Estève J: Comparison of direct digital mammography, computed radiography, and film-screen in the French National Breast Cancer Screening Program. Am J Roentgenol 202:229–236, 2014. doi:10.2214/AJR.12.10419
Souza FH, Wendland EM, Rosa MI, Polanczyk CA: Is full-field digital mammography more accurate than screen-film mammography in overall population screening? A systematic review and meta-analysis. Breast 22:217–224, 2013. doi:10.1016/j.breast.2013.02.013
Lewin JM, Hendrick RE, D’Orsi CJ, Isaacs PK, Moss LJ, Karellas A, Sisney G a, Kuni CC, Cutter GR: Comparison of full-field digital mammography with screen-film mammography for cancer detection: results of 4,945 paired examinations. Radiology 218:873–880, 2001. doi:10.1148/radiology.218.3.r01mr29873
Lowes S, Liyanage U, Holmes CE, Sibal N, McLean L: Detection of microcalcifications during breast screening: a comparison of digital versus screen-film mammography. Clin Radiol 68:S1–S57, 2013. doi:10.1016/j.crad.2013.05.034
Berg WA, Blume JD, Cormack JB, Ellen B, Lehrer D, Böhm-vélez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM: Combined screening with ultrasound and mammography compared to mammography alone in women at elevated risk of breast cancer: results of the first-year screen in ACRIN 6666. Jama 299:2151–2163, 2008. doi:10.1001/jama.299.18.2151
Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW: Breast cancer screening with imaging: recommendations from the society of breast imaging and the acr on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7:18–27, 2010. doi:10.1016/j.jacr.2009.09.022
U.S. Preventive Services Task Force: Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. In: Ann Intern Med. Philadelphia, pp 716–726, 2009
Kolb TM, Lichy J, Newhouse JH: Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175, 2002. doi:10.1148/radiol.2251011667
Nelson HD, O’Meara ES, Kerlikowske K, Balch S, Miglioretti D: Factors associated with rates of false-positive and false-negative results from digital mammography screening: an analysis of registry data. Ann Intern Med 164:226–235, 2016. doi:10.7326/M15-0971
Le MT, Mothersill CE, Seymour CB, McNeill FE: Is the false-positive rate in mammography in North America too high? Br J Radiol 89:20160045, 2016. doi:10.1259/bjr.20160045
Mahoney MC, Meganathan K: False positive marks on unsuspicious screening mammography with computer-aided detection. J Digit Imaging 24:772–777, 2011. doi:10.1007/s10278-011-9389-7
Payne JI, Martin T, Caines JS, Duggan R: The burden of false-positive results in analog and digital screening mammography: experience of the Nova Scotia breast screening program. Can Assoc Radiol J 65:315–320, 2014. doi:10.1016/j.carj.2014.03.002
Singh D, Pitkäniemi J, Malila N, Anttila A: Cumulative risk of false positive test in relation to breast symptoms in mammography screening: a historical prospective cohort study. Breast Cancer Res Treat 159:305–313, 2016. doi:10.1007/s10549-016-3931-8
Bolejko A, Zackrisson S, Hagell P, Wann-Hansson C: A roller coaster of emotions and sense—coping with the perceived psychosocial consequences of a false-positive screening mammography. J Clin Nurs 23:2053–2062, 2013. doi:10.1111/jocn.12426
Borg M, Badr I, Royle GJ: The use of a figure-of-merit (FOM) for optimisation in digital mammography: a literature review. Radiat Prot Dosim 151:1–8, 2012. doi:10.1093/rpd/ncr465
Niimi T, Imai K, Maeda H, Ikeda M: Information loss in visual assessments of medical images. Eur J Radiol 61:362–366, 2007. doi:10.1016/j.ejrad.2006.09.009
Fletcher-Heath L: Quantifying the performance of human and software CDMAM phantom image observers for the qualification of digital mammography systems. Proc SPIE 5745:486–498, 2005. doi:10.1117/12.595510
Chen B, Wang Y, Sun X, Guo W, Zhao M, Cui G, Hu L, Li P, Ren Y, Feng J, Yu J: Analysis of patient dose in full field digital mammography. Eur J Radiol 81:868–872, 2012. doi:10.1016/j.ejrad.2011.02.027
Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G: Evaluating the Figure of Merit in mammography utilizing Monte Carlo simulation. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 580:493–496, 2007. doi:10.1016/j.nima.2007.05.197
Toroi P, Zanca F, Young KC, van Ongeval C, Marchal G, Bosmans H: Experimental investigation on the choice of the tungsten/rhodium anode/filter combination for an amorphous selenium-based digital mammography system. Eur Radiol 17:2368–2375, 2007. doi:10.1007/s00330-006-0574-x
Koutalonis M, Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G: Contrast-to-noise ratio in magnification mammography: a Monte Carlo study. Phys Med Biol 52:3185–3199, 2007. doi:10.1088/0031-9155/52/11/017
Nishino TK, Wu X, Johnson RF: Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography. Am J Roentgenol 185:960–963, 2005. doi:10.2214/AJR.04.1489
Samei E, Flynn MJ: An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30:608–622, 2003. doi:10.1118/1.1561285
General Electric Medical Systems: Senographe DS Acquisition System 0459. Operator Manual 2385062–100. Revision 2, 2004
European Commission: European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. Luxembourg, 2006
Noether GE: Introduction to Statistics: The Nonparametric Way. Springer, New York, 1991
Karssemeijer N, Thijssen MAO: Determination of contrast-detail curves of mammography systems by automated image analysis. In: International Workshop on Digital Mammography. Chicago 3:155–160, 1996
Van der Burght R, Thijssen M, Bijkerk R: Manual contrast-detail phantom CDMAM 3.4 & CDMAM Analyser software V1.2., 2009
NHSBSP Equipment Report: Commissioning and Routine Testing of Full Field Digital Mammography Systems. London, 2009
European Commission: European Protocol on Dosimetry in Mammography. EUR 1623 EN, 1996
Dance DR, Skinner CL, Young KC, Becktt JR, Kotre CJ: Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240, 2000
Cowen AR, Brettle DS, Coleman NJ, Parkin GJS: A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality control test object. Br J Radiol 65:528–535, 1992
Kotre CJ, Birch IP: Phase contrast enhancement of X-ray mammography: a design study. Phys Med Biol 44:2853–2866, 1999
Siegel S, Castellan NJ: Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York, 1988
Tiwari M, Gupta B, Shrivastava M: High-speed quantile-based histogram equalisation for brightness preservation and contrast enhancement. IET Image Process 9:80–89, 2015. doi:10.1049/iet-ipr.2013.0778
Hongbo Y, Xia H: Histogram modification using grey-level co-occurrence matrix for image contrast enhancement. IET Image Process 8:782–793, 2014. doi:10.1049/iet-ipr.2013.0657
Ewert U, Heyne K, Zscherpel U, Jechow M, Bavendiek K: Optimum exposure conditions for computed radiography depending on fixed pattern noise and efficiency of imaging plate-scanner systems. AIP Conf Proc 30:493–500, 2011. doi:10.1063/1.3591892
Gonzalez RC, Woods RE: Digital Image Processing, 3rd ed. Pearson Education, 2008
Pascoal A, Lawinski CP, Honey I, Blake P: Evaluation of a software package for automated quality assessment of contrast detail images—comparison with subjective visual assessment. Phys Med Biol 50:5743–5757, 2005. doi:10.1088/0031-9155/50/23/023
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fausto, A.M.F., Lopes, M.C., de Sousa, M.C. et al. Optimization of Image Quality and Dose in Digital Mammography. J Digit Imaging 30, 185–196 (2017). https://doi.org/10.1007/s10278-016-9928-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-016-9928-3