Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Precise orbit determination of BeiDou constellation: method comparison

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Chinese BeiDou navigation satellite system is in official service as a regional constellation with five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites and four medium earth orbit (MEO) satellites. There are mainly two methods for precise orbit determination of the BeiDou constellation found in the current literatures. One is the independent single-system method, where only BeiDou observations are used without help from other GNSS systems. The other is the two-step GPS-assisted method where in the first step, GPS data are used to resolve some common parameters, such as station coordinates, receiver clocks and zenith tropospheric delay parameters, which are then introduced as known quantities in BeiDou processing in the second step. We conduct a thorough performance comparison between the two methods. Observations from the BeiDou experimental tracking stations and the IGS Multi-GNSS Experiment network from January 1 to March 31, 2013, are processed with the Positioning and Navigation Data Analyst (PANDA) software. The results show that for BeiDou IGSO and MEO satellites, the two-step GPS-assisted method outperforms the independent single-system method in both internal orbit overlap precision and external satellite laser ranging validation. For BeiDou GEO satellites, the two methods show close performances. Zenith tropospheric delays estimated from the first method are very close to those estimated from GPS precise point positioning in the second method, with differences of several millimeters. Satellite clock estimates from the two methods show similar performances when assessing the stability of the BeiDou on board clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modelling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386

    Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame 2008. IERS notice. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304

    Article  Google Scholar 

  • Dow J, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198

    Article  Google Scholar 

  • Epstein M, Dass T, Rajan DJ, Gilmourn P (2007) Long-term clock behavior of GPS IIR satellites. In: Proceedings of the 39st precise time and time interval meeting, Long Beach, pp 59–78

  • Förste C, Schmidt R, Stubenvoll R et al (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6):331–346

    Article  Google Scholar 

  • Ge M, Zhang HP, Jia XL, Song SL, Wickert J (2012) What is achievable with current COMPASS constellation? In: Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation, Nashville, pp 331–339

  • Geng J, Meng X, Dodson A, Teferle F (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84(9):569–581

    Article  Google Scholar 

  • Gong H, Yang W, Wang Y, Zhu X, Wang F (2012) Comparison of short term stability estimation methods of GNSS on-board clock. In: Sun J, Liu J, Yang Y, Fan S (eds) China satellite navigation conference (CSNC) 2012 proceedings. Lecture notes in electrical engineering, vol 160. Springer, Heidelberg, pp 503–513. doi:10.1007/978-3-642-29175-3_46

  • Haase J, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the Western Mediterranean. J Appl Meteorol 42:1547–1568

    Article  Google Scholar 

  • He L, Ge M, Wang J, Wickert J, Schuh H (2013) Experimental study on the precise orbit determination of the BeiDou navigation satellite system. Sensors 13(3):2911–2928

    Article  Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Kuang D, Bar-Sever YE, Bertiger WI, Hurst KJ, Zumberge JF (2001) GPS-assisted GLONASS orbit determination. J Geod 75(11):569–574

    Article  Google Scholar 

  • Liu JN, Ge MR (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Lou YD, Liu Y, Shi C, Yao XG, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4:4692

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • McCarthy DD, Petit G (2004) IERS conventions (2004). IERS technical note 32. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2012) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30:135–143

    Article  Google Scholar 

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy, American Geophysics Union. Geophys Monogr Ser 15:247–251

    Google Scholar 

  • Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of BeiDou satellites with precise positioning. Sci China Earth Sci 55:1079–1086

    Article  Google Scholar 

  • Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119

    Article  Google Scholar 

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geod 87(6):515–525

    Article  Google Scholar 

  • Weber R (2012) IGS GNSS working group. In: Meindl M, Dach R, Jean Y (eds) International GNSS service technical report 2011. Jet Propulsion Laboratory, Pasadena, pp 159–163

    Google Scholar 

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

  • Xu A, Xu Z, Ge M, Xu X, Zhu H, Sui X (2013) Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors 13:4514–4526

    Article  Google Scholar 

  • Yang YX (2010) Progress, contribution and challenges of Compass/Beidou satellite navigation system. Acta Geod Cartogr Sin 39(1):1–6

    Google Scholar 

  • Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgments

We thank the IGS MGEX campaign for providing multi-GNSS data. We are grateful to the reviewers for their constructive comments and suggestions. This work was supported by the National Nature Science Foundation of China (No. 41374034) and the National “863 Program” of China (Grant No. 2012AA12A202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Liu, Y., Shi, C. et al. Precise orbit determination of BeiDou constellation: method comparison. GPS Solut 20, 259–268 (2016). https://doi.org/10.1007/s10291-014-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0436-y

Keywords