Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Centimeter-accurate vehicle navigation in urban environments with a tightly integrated PPP-RTK/MEMS/vision system

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Emerging applications like autonomous cars and unmanned aerial vehicles demand accurate, continuous and reliable positioning. The PPP-RTK technique, which could provide a rapid centimeter-accurate positioning service using a single GNSS receiver, has been recognized as a promising tool for mass-market and automotive applications. Nevertheless, the positioning performance of PPP-RTK degrades in urban environments because of the frequent signal deteriorating and blocking. Inertial navigation system (INS) is commonly integrated with GNSS to improve the continuity, accuracy and reliability of precise positioning as it has several advantages of all-environment operability and high temporal resolution, but it is limited by rapid error accumulation in long-term operation, especially when a microelectromechanical system inertial measurement unit (MEMS-IMU) is employed. Fortunately, the camera, another low-cost sensor, which provides rich information about the surrounding environment, is expected to improve the navigation performance further. This contribution develops a tightly integrated PPP-RTK/MEMS/vision model to achieve continuous and accurate positioning in urban environments. The raw data of MEMS-IMU and a stereo camera, as well as the high-precision GNSS phase measurements, are fused based on a multistate constraint Kalman filter to fully exploit the complementary properties from heterogeneous sensors. On this basis, a fast ambiguity resolution is achievable with the augmentation of the high-precision INS/vision information and the precise atmospheric corrections. The proposed integrated system is validated by several vehicle experiments conducted in urban areas. Results indicate that a centimeter-level accuracy of 4.1, 2.2 and 7.3 cm in the east, north and up components, respectively, and a high fixing percentage of 96.8% can be achieved for PPP-RTK/MEMS/vision in an urban environment, which exhibits comparable performance with respect to the tight integration of PPP-RTK and a tactical IMU. Besides, ambiguity refixing can be implemented instantaneously for the integrated system when going under three consecutive overpasses in 25 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets collected in the vehicular test campaign are available on reasonable request from the corresponding author.

References

  • Angelino CV, Baraniello VR, Cicala L (2012) UAV position and attitude estimation using IMU, GNSS and camera. In: Proceedings of the IEEE ICIF 2012, Singapore, July 9–112, pp 735–742

  • Cao S, Lu X, Shen S (2021) GVINS: tightly coupled GNSS-visual-inertial for smooth and consistent state estimation. http://arxiv.org/abs/2103.07899

  • de Oliveira PS, Morel L, Fund F, Legros R, Monico JFG, Durand S, Durand F (2017) Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK. GPS Solut 21(1):237–250

    Article  Google Scholar 

  • Furgale P, Rehder J, Siegwart R (2013) Unified temporal and spatial calibration for multi-sensor systems. In: Proceedings of the IEEE/RSJ ICIRS, Tokyo, Japan, November 3–7, pp 1280–1286

  • Gao Z, Shen W, Zhang H, Niu X, Ge M (2016) Real-time kinematic positioning of ins tightly aided multi-GNSS ionospheric constrained PPP. Sci Rep 6(1):30488

    Article  Google Scholar 

  • Gao Z, Ge M, Li Y, Chen Q, Zhang Q, Niu X, Zhang H, Shen W, Harald S (2018) Odometer, low-cost inertial sensors, and four-GNSS data to enhance PPP and attitude determination. GPS Solut 22(3):57

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning with daily observations. J Geod 82(7):389–399

    Article  Google Scholar 

  • Geng J, Shi C (2017) Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously. J Geod 91(4):361–374

    Article  Google Scholar 

  • Gu S, Dai C, Fang W, Zhang Z, Wang Y, Zhang Q, Lou Y, Niu X (2021) Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation. J Geod 95(6):64

    Article  Google Scholar 

  • Han S (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geod 71(6):351–361

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca B, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Article  Google Scholar 

  • Li X, Zhang X, Ge M (2011) Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geod 85(3):151–158

    Article  Google Scholar 

  • Li X, Ge M, Douša J, Wickert J (2014) Real-time precise point positioning regional augmentation for large GPS reference networks. GPS Solut 18(1):61–71

    Article  Google Scholar 

  • Li T, Zhang H, Gao Z, Niu X, El-Sheimy N (2019) Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-Challenged environments. Remote Sens 11(6):610

    Article  Google Scholar 

  • Li X, Huang J, Li X, Lyu H, Wang B, Xiong Y, Xie W (2021a) Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation. GPS Solut. https://doi.org/10.1007/s10291-021-01123-0

    Article  Google Scholar 

  • Li X, Li X, Huang J, Shen Z, Wang B, Yuan Y, Zhang K (2021b) Improving PPP–RTK in urban environment by tightly coupled integration of GNSS and INS. J Geod 95(12):132

    Article  Google Scholar 

  • Li X, Wang B, Li X, Huang J, Lyu H, Han X (2022) Principle and performance of multi-frequency and multi GNSS PPP RTK. Satell Navig. https://doi.org/10.1186/s43020-022-00068-0

    Article  Google Scholar 

  • Liu S, Sun F, Zhang L, Li W, Zhu X (2016) Tight integration of ambiguity-fixed PPP and INS: model description and initial results. GPS Solut 20(1):39–49

    Article  Google Scholar 

  • Lynen S, Achtelik MW, Weiss S, Chli M, Siegwart R (2013) A robust and modular multi-sensor fusion approach applied to MAV navigation. In: Proceedings of the IEEE/RSJ ICIRS, Tokyo, Japan, November 3–7, pp 3923–3929

  • Mascaro R, Teixeira L, Hinzmann T, Siegwart R, Chli M (2018) GOMSF: graph-optimization based multi-sensor fusion for robust UAV pose estimation. In: Proceedings of the IEEE ICRA 2018, Brisbane, Australia, May 21–25, pp 1421–1428

  • Mur-Artal R, Tardós JD (2017) ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans Robot 33(5):1255–1262

    Article  Google Scholar 

  • Psychas D, Verhagen S (2020) Real-time PPP-RTK performance analysis using ionospheric corrections from multi-scale network configurations. Sensors 20(11):3012

    Article  Google Scholar 

  • Qin T, Li P, Shen S (2018) VINS-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot 34(4):1004–1020

    Article  Google Scholar 

  • Qin T, Cao S, Pan J, Shen S (2019) A general optimization-based framework for global pose estimation with multiple sensors. http://arxiv.org/1901.03642

  • Rabbou MA, El-Rabbany A (2014) Tightly coupled integration of GPS precise point positioning and MEMS-based inertial systems. GPS Solut 19(4):601–609

    Article  Google Scholar 

  • Rabbou MA, El-Rabbany A (2015) Integration of multi-constellation GNSS ISE point positioning and mems-based inertial systems using tightly coupled mechanization. Positioning 6(4):81–95

    Article  Google Scholar 

  • Ren X, Chen J, Li X, Zhang X (2021) Ionospheric total electron content estimation using GNSS carrier phase observations based on zero-difference integer ambiguity: methodology and assessment. IEEE Trans Geosci Remote Sens 59(1):1–14

    Article  Google Scholar 

  • Reuper B, Becker M, Leinen S (2018) Benefits of multi-constellation/multi-frequency GNSS in a tightly coupled GNSS/IMU/odometry integration algorithm. Sensors 18(9):3052

    Article  Google Scholar 

  • Shin EH (2005) Estimation techniques for low-cost inertial navigation. UCGE report, p 20219

  • Sun K, Mohta K, Pfrommer B, Watterson M, Liu S, Mulgaonkar Y, Taylor CJ, Kumar V (2018) Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot Autom Lett 3(2):965–972

    Article  Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen PJG, Khodabandeh A (2015) Review and principles of PPP-RTK methods. J Geod 89(3):217–240

    Article  Google Scholar 

  • Wübbena G, Schmitz M, Bagg A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of the ION GNSS 2005, Long Beach, CA, September 13–16, pp 2584–2594

  • Yang Y, Ding Q, Gao W, Li J, Xu Y, Sun B (2022) Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell Navig. https://doi.org/10.1186/s43020-022-00066-2

    Article  Google Scholar 

  • Zhang X, Li P (2013) Assessment of correct fixing rate for precise point positioning ambiguity resolution on a global scale. J Geod 87(6):579–589

    Article  Google Scholar 

  • Zhang X, Zhu F, Zhang Y, Mohamed F, Zhou W (2018) The improvement in integer ambiguity resolution with ins aiding for kinematic precise point positioning. J Geod 93(7):993–1010

    Article  Google Scholar 

  • Zhang B, Chen Y, Yuan Y (2019) PPP-RTK based on undifferenced and uncombined observations: theoretical and practical aspects. J Geod 93(7):1011–1024

    Article  Google Scholar 

  • Zhang X, Ren X, Chen J, Zuo X, Mei D, Liu W (2022) Investigating GNSS PPP–RTK with external ionospheric constraints. Satell Navig 3(6):1–13

    Google Scholar 

  • Zuo X, Geneva P, Lee W, Liu Y, Huang G (2019) LIC-fusion: lidar-inertial-camera odometry. In: Proceedings of the IEEE/RSJ IROS 2019, Macau, China, November 04–08, pp 5848–5854

Download references

Acknowledgements

This work has been supported by the National Key Research and Development Program of China (2021YFB2501102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Jacobians of the estimated camera states

Appendix 1: Jacobians of the estimated camera states

This section introduces the specific expression of Jacobians of estimated camera states. The linearized visual observation equations for a single feature \(f_{j}\) observed at the time step \(i\) can be written as:

$${\mathbf{r}}_{{{\text{vis}},i}}^{j} {\mathbf{ = z}}_{{{\text{vis}},i}}^{j} - {\hat{\mathbf{z}}}_{{{\text{vis}},i}}^{j} {\mathbf{ = H}}_{{C_{i} }}^{j} \delta {\mathbf{x}}_{{C_{i} }} + {\mathbf{H}}_{{f_{i} }}^{j} \delta {\mathbf{p}}_{j}^{e} {\mathbf{ + n}}_{{{\text{vis}},i}}^{j}$$
(19)

where \(\delta {\mathbf{x}}_{{C_{i} }} { = }\left[ {\delta {{\varvec{\uptheta}}}_{{C_{i} }}^{e} ,\delta {\mathbf{p}}_{{C_{i} }}^{e} } \right]^{{\text{T}}}\) denotes the error state vector of the camera pose; \(\delta {\mathbf{p}}_{j}^{e}\) is the feature position error; and \({\mathbf{H}}_{{C_{i} }}^{j}\) and \({\mathbf{H}}_{{f_{i} }}^{j}\) represent the corresponding Jacobians, respectively, which can be written as:

$${\mathbf{H}}_{{C_{i} }}^{j} { = }\left( {\begin{array}{*{20}c} {{\mathbf{H}}_{1} \left( {{\hat{\mathbf{p}}}_{j}^{{C_{i,l} }} \times } \right)} & { - {\mathbf{H}}_{1} \left( {{\hat{\mathbf{R}}}_{{C_{i,l} }}^{e} } \right)^{{\text{T}}} } \\ {\left( {{\mathbf{H}}_{2} \cdot {\mathbf{R}}_{{C_{i,l} }}^{{C_{i,r} }} } \right)\left( {{\hat{\mathbf{p}}}_{j}^{{C_{i,l} }} \times } \right)} & { - \left( {{\mathbf{H}}_{2} \cdot {\mathbf{R}}_{{C_{i,l} }}^{{C_{i,r} }} } \right)\left( {{\hat{\mathbf{R}}}_{{C_{i,l} }}^{e} } \right)^{{\text{T}}} } \\ \end{array} } \right),\quad {\mathbf{H}}_{{f_{i} }}^{j} { = }\left( {\begin{array}{*{20}c} {{\mathbf{H}}_{1} \left( {{\hat{\mathbf{R}}}_{{C_{i,l} }}^{e} } \right)^{{\text{T}}} } \\ {{\mathbf{H}}_{2} {\mathbf{R}}_{{C_{i,l} }}^{{C_{i,r} }} \left( {{\hat{\mathbf{R}}}_{{C_{i,l} }}^{e} } \right)^{{\text{T}}} } \\ \end{array} } \right)$$
(20)
$${\text{with}}\quad\quad {\mathbf{H}}_{1} = \frac{1}{{\left( {\hat{Z}_{j}^{{C_{i,l} }} } \right)^{2} }}\left( {\begin{array}{*{20}r} \hfill {\hat{Z}_{j}^{{C_{i,l} }} } & \hfill 0 & \hfill { - \hat{X}_{j}^{{C_{i,l} }} } \\ \hfill 0 & \hfill {\hat{Z}_{j}^{{C_{i,l} }} } & \hfill { - \hat{Y}_{j}^{{C_{i,l} }} } \\ \hfill {0} & \hfill {0} & \hfill {0} \\ \hfill {0} & \hfill {0} & \hfill {0} \\ \end{array} } \right),\quad {\mathbf{H}}_{2} = \frac{1}{{\left( {\hat{Z}_{j}^{{C_{i,r} }} } \right)^{2} }}\left( {\begin{array}{*{20}r} \hfill {0} & \hfill {0} & \hfill {0} \\ \hfill {0} & \hfill {0} & \hfill {0} \\ \hfill {\hat{Z}_{j}^{{C_{i,r} }} } & \hfill {0} & \hfill { - \hat{X}_{j}^{{C_{i,r} }} } \\ \hfill 0 & \hfill {\hat{Z}_{j}^{{C_{i,r} }} } & \hfill { - \hat{Y}_{j}^{{C_{i,r} }} } \\ \end{array} } \right)$$
(21)

Considering that the same feature will be tracked by multiple consecutive camera poses, therefore the linearized visual observation vector for this feature can be obtained by stacking all the individual equations together:

$$\underbrace {{\left[ {\begin{array}{*{20}c} {u_{1,l}^{j} } \\ \vdots \\ {v_{k,r}^{j} } \\ \end{array} } \right]}}_{{{\mathbf{z}}_{{{\text{vis}}}}^{j} }} = \underbrace {{\left[ {\begin{array}{*{20}c} {\hat{X}_{j}^{{C_{1,l} }} /\hat{Z}_{j}^{{C_{1,l} }} } \\ \vdots \\ {\hat{Y}_{j}^{{C_{k,r} }} /\hat{Z}_{j}^{{C_{k,r} }} } \\ \end{array} } \right]}}_{{{\hat{\mathbf{z}}}_{{{\text{vis}}}}^{j} }} + \underbrace {{\left[ {\begin{array}{*{20}c} {{\mathbf{H}}_{{C_{1} }}^{j} } \\ \vdots \\ {{\mathbf{H}}_{{C_{k} }}^{j} } \\ \end{array} } \right]}}_{{{\mathbf{H}}_{C}^{j} }}\delta {\mathbf{x}}_{C} + \underbrace {{\left[ {\begin{array}{*{20}c} {{\mathbf{H}}_{f,1}^{j} } \\ \vdots \\ {{\mathbf{H}}_{f,k}^{j} } \\ \end{array} } \right]}}_{{{\mathbf{H}}_{f}^{j} }}\delta {\mathbf{p}}_{{f_{j} }}^{e} + {\mathbf{n}}_{{{\text{vis}}}}^{j}$$
(22)

where \(k\) denotes the \(k\)-th camera pose in the sliding window.

Since the feature positions are computed with the camera poses, the uncertainty of feature position is thereby correlated with the camera pose in the estimator. To eliminate the correlation between the feature position and camera poses, the linearized observation vector is reformulated by projecting it on the left null space (\({\mathbf{A}}_{j}^{{\text{T}}}\)) of the matrix \({\mathbf{H}}_{f}^{j}\), which can be rewritten as:

$${\mathbf{A}}_{j}^{{\text{T}}} {\mathbf{z}}_{{{\text{vis}}}}^{j} = {\mathbf{A}}_{j}^{{\text{T}}} {\hat{\mathbf{z}}}_{{{\text{vis}}}}^{j} + {\mathbf{A}}_{j}^{{\text{T}}} {\mathbf{H}}_{C}^{j} \delta {\mathbf{x}}_{C} + {\mathbf{n}}_{{{\text{vis}}}}^{j}$$
(23)

In this way, the visual observation equation is independent of the errors of the estimated feature position; therefore, the EKF update can be performed.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, X., Li, S. et al. Centimeter-accurate vehicle navigation in urban environments with a tightly integrated PPP-RTK/MEMS/vision system. GPS Solut 26, 124 (2022). https://doi.org/10.1007/s10291-022-01306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-022-01306-3

Keywords