Abstract
According to the discrete Hamilton–Pontryagin variational principle, we construct a class of variational integrators in the real vector spaces and extend to the Lie groups for the left-trivialized Lagrangian mechanical systems by employing the spectral-collocation method to discretize the corresponding Lagrangian and kinematic constraints. The constructed framework can be transformed easily to the well-known symplectic partitioned Runge–Kutta methods and the higher order symplectic partitioned Lie Group methods by choosing same interpolation nodes and quadrature points. Two numerical experiments about the orbit propagation of Kepler two-body system and the rigid-body flow propagation of a free rigid body are conducted, respectively. The simulating results reveal that the constructed update schemes can possess simultaneously the excellent exponent convergence rates of spectral methods and the attractive long-term structure-preserving properties of geometric numerical algorithms.
Graphic abstract
Similar content being viewed by others
References
Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer 10, 357–514 (2001). https://doi.org/10.1017/S096249290100006X
Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)
Hall, J., Leok, M.: Spectral variational integrators. Numer. Math. 130, 681–740 (2015). https://doi.org/10.1007/s00211-014-0679-0
Tran, B., Leok, M.: Multisymplectic Hamiltonian Variational Integrators, arXiv preprint, arXiv:2101.07536 (2021)
Leitz, T., de Almagro, R.T.S.M., Leyendecker, S.: Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation—no shear locking. Comput. Methods Appl. Mech. Eng. 374, 113475 (2021). https://doi.org/10.1016/j.cma.2020.113475
Bou-Rabee, N., Marsden, J.E.: Hamilton-Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties. Found. Comput. Math. 9(2), 197–219 (2009). https://doi.org/10.1007/s10208-008-9030-4
Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics part I: implicit Lagrangian systems. J. Geom. Phys. 57(1), 133–156 (2006). https://doi.org/10.1016/j.geomphys.2006.02.009
Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics Part II: variational structures. J. Geom. Phys. 57(1), 209–250 (2006). https://doi.org/10.1016/j.geomphys.2006.02.012
Cendra, H., Marsden, J.E., Pekarsky, S., et al.: Variational principles for Lie-Poisson and Hamilton-Poincaré equations. Mosc. Math. J. 3, 833–867 (2003). https://doi.org/10.17323/1609-4514-2003-3-3-833-867
Marsden, J.E., Scheurle, J.: The reduced Euler-Lagrange equations. Fields Inst. Commun. 1, 139–164 (1993). https://doi.org/10.1090/fic/001/07
Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999). https://doi.org/10.1016/S0168-9274(98)00030-0
Engø, K.: On the construction of geometric integrators in the RKMK class. BIT Numer. Math. 40(1), 41–61 (2000). https://doi.org/10.1023/A:1022362117414
Xing, J.T.: Generalised energy conservation law of chaotic phenomena. Acta. Mech. Sin. 35, 1257–1268 (2019). https://doi.org/10.1007/s10409-019-00886-7
Chen, Y.M., Liu, Q.X., Liu, J.K.: Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems. Acta. Mech. Sin. 36, 918–925 (2020). https://doi.org/10.1007/s10409-020-00966-z
Bogfjellmo, G., Marthinsen, H.: High-order symplectic partitioned Lie group methods. Found. Comput. Math. 16(2), 493–530 (2016). https://doi.org/10.1007/s10208-015-9257-9
Shi, D.H., Berchenko-Kogan, Y., Zenkov, D.V., et al.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. 27(1), 241–283 (2017). https://doi.org/10.1007/s00332-016-9332-7
Leok, M.: Variational discretizations of gauge field theories using group-equivariant interpolation. Found. Comput. Math. 19(5), 965–989 (2019). https://doi.org/10.1007/s10208-019-09420-4
Kharevych, L., Yang, W., Tong, Y., et al.: Geometric, variational integrators for computer animation. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp 43–51 (2006) https://doi.org/10.5555/1218064.1218071
Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graph. TOG 28(2), 1–14 (2009). https://doi.org/10.1145/1516522.1516527
Kobilarov, M., Marsden, J.E.: Discrete geometric optimal control on Lie groups. IEEE Trans. Rob. 27(4), 641–655 (2011). https://doi.org/10.1109/TRO.2011.2139130
Jiménez, F., Kobilarov, M., de Diego, D.M.: Discrete variational optimal control. J. Nonlinear Sci. 23(3), 393–426 (2013). https://doi.org/10.1007/s00332-012-9156-z
Gu, Y., Shen, J.: An efficient spectral method for elliptic PDEs in complex domains with circular embedding. SIAM J. Sci. Comput. 43(1), A309–A329 (2021). https://doi.org/10.1137/20M1345153
Sheng, C., Shen, J., Tang, T., et al.: Fast fourier-like mapped chebyshev spectral-galerkin methods for PDEs with integral fractional laplacian in unbounded domains. SIAM J. Numer. Anal. 58(5), 2435–2464 (2020). https://doi.org/10.1137/19M128377X
Hall, J., Leok, M.: Lie group spectral variational integrators. Found. Comput. Math. 17(1), 199–257 (2017). https://doi.org/10.1007/s10208-015-9287-3
Yi, Z.G., Yue, B.Z., Deng, M.: Chebyshev spectral variational integrator and applications. Appl. Math. Mech. 41(5), 753–768 (2020). https://doi.org/10.1007/s10483-020-2602-8
Bolatti, D.A., De Ruiter, A.H.: Galerkin variational integrators for orbit propagation with applications to small bodies. J. Guid. Control. Dyn. 42(2), 347–363 (2019). https://doi.org/10.2514/1.G003767
Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4), 1497–1532 (2011). https://doi.org/10.1093/imanum/drq027
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, New York (2013)
Holm, D.D.: Geometric Mechanics: Part II: Rotating, Translating and Rolling. World Scientific Publishing Company, London (2008)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, New York (2006)
Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., et al.: Lie-group methods. Acta Numer. 9, 215–365 (2000). https://doi.org/10.1017/S0962492900002154
Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Philos. Trans. R. Soc. Lond. Ser. A 357(1754), 983–1019 (1999). https://doi.org/10.1098/rsta.1999.0362
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grants 11772049, and 12132002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Executive Editor: Guilin Wen
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix-A
We know that Sect. 3.2 takes a “reverse order” interpolation style to construct the HP spectral-collocation variational integrators in Eq. (14). We would give the results of taking a “positive order” style in the following.
Firstly, adopt the Lagrange interpolation polynomial to approximate the variable \(q(t)\) on the \(k{\text{th}}\) time subinterval \([kh,(k + 1)h]\), i.e.,
where \({{t_{\sigma } = (\sigma + 1)h} \mathord{\left/ {\vphantom {{t_{\sigma } = (\sigma + 1)h} 2}} \right. \kern-\nulldelimiterspace} 2}{\text{ belongs to }}[0,h]\), \(l_{j,s} (\sigma )\) is the interpolation basis function, and \(q_{k}^{j}\) represent the control nodes in interval \([0,h]\).
Then we can obtain the approximation curve of velocity term \(\dot{q}_{\text{d}} (t)\) by using the following differential formula
where \(\dot{l}_{j,s} (\sigma )\) is the differential of classic Lagrange interpolation polynomial. One can choose the Barycentric Lagrange interpolation, which possesses a better numerical stability [25].
Given a Lagrangian \(L:TQ \to {\mathbb{R}}\) with second order continuous partial derivatives, we then define a discrete path space \({\mathcal{C}}_{\text{d}} = \left\{ {\left[ {q,p,\left( {Q^{i} ,V^{i} ,p^{i} } \right)_{i = 1}^{m} } \right]_{\text{d}} :\left( {t_{k} } \right)_{k = 0}^{N} \to T^{ * } Q \times } \right.\) \(\left. {\left( {TQ \times T^{ * } Q} \right)^{m} \left| {q(t_{0} ) = q_{0} ,q(t_{N} ) = q_{N} } \right.} \right\}\). Then the discrete HP action sum \({\mathfrak{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} ) \to {\mathbb{R}}\) takes the form as following
where \(q_{k}^{ + }\) is the approximating point of \(q_{k}\) from the “right” side, and \(q_{k + 1}^{ - }\) is the approximating point of \(q_{k + 1}\) from the “left” side in the \(k{\text{th}}\) time interval \([t_{k} ,t_{k + 1} ]\).
According to the discrete HP variational principle, we should find a discrete curve \(c_{\text{d}} \in {\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} )\), which is a critical point of \({\mathfrak{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} ) \to {\mathbb{R}}\), i.e.,\({\mathbf{d}}{\mathfrak{S}}_{\text{d}} (c_{\text{d}} ) = 0\). Taking the variations of \({\mathfrak{S}}_{\text{d}}\) yields
Substituting expression \(Q_{k}^{i} = \sum\nolimits_{j = 0}^{s} {l_{j,s} (\sigma_{i} )q_{k}^{j} }\), \(q_{k}^{ + } = q_{k}^{0}\), and \(q_{k + 1}^{ - } = q_{k}^{s}\) into above equation yields
Collecting the terms with same variations and eliminating \(p_{k}^{i}\) terms gain
Finally, one can arrive at a set of discrete update schemes, which can be written in a compact form as
for \(i = 1,{ 2, } \cdots , \, m\); \(j = 1,{ 2, } \cdots , \, s - 1\); and \(k = 0,{ 1, } \cdots , \, N - 1\).
One can find that the discrete update framework in Eq. (A-7) is just the well-known spectral variational integrators presented in Refs. [3, 25] (i.e., Eq. (8–10) of Ref. [3] and Eq. (11a-11c) of Ref. [25], respectively), where the result is derived from the discrete variational mechanics, but here we achieve it from the HP perspective.
Appendix-B
When the Lagrangian is left-invariant, i.e., \(L(g,v) = L(hg,hv)\) holds for all \(h \in G\), then the reduced Lagrangian \({\ell }(\xi ) = L(e,\xi ) = L(g,g\xi )\) (with \(h = g^{ - 1}\)) can be obtained. One can derive the discrete spectral-collocation update schemes as described in Eq. (39).
The continuous reduced HP action integral can be written as
The approximation strategy is similar to the one in Sect. 3.3. We define the discrete reduced path space as \({\mathcal{C}}_{\text{d}} = \left\{ {\left[ {g,\Lambda ,\left( {\Theta^{i} ,\Xi^{i} } \right)_{i = 1}^{s} ,\left( {\lambda^{j} } \right)_{j = 1}^{m} } \right]_{\text{d}} :\left( {t_{k} } \right)_{k = 0}^{N} \to \left( {G \times {\mathfrak{g}}^{ * } } \right) \times } \right.\)\(\left. {\left( {{\mathfrak{g}} \times {\mathfrak{g}}^{ * } } \right)^{s} \times \left( {{\mathfrak{g}}^{ * } } \right)^{m} \left| {g(t_{0} ) = g_{0} ,g(t_{N} ) = g_{N} } \right.} \right\}.\)
Then the discrete reduced HP action sum \({\mathcal{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} \to {\mathbb{R}}\) takes the following form
The discrete reduced HP principle states that \({\updelta }{\mathcal{S}}_{{\text{d}}} = 0\) with variations \(\left( {{\updelta }g_{k} ,{\updelta }\Lambda_{k} ,{\updelta }\Theta_{k}^{i} ,{\updelta }\Xi_{k}^{i} ,{\updelta }\lambda_{k}^{j} } \right)\) and the fixed endpoint variations \(\left( {{\updelta }g_{0} = {\updelta }g_{N} = 0} \right)\). Taking the variation of \({\mathcal{S}}_{{\text{d}}}\) yields
In terms of expressions \(\Xi_{k}^{j} = \sum\nolimits_{i = 1}^{s} {l_{i,s} (\sigma_{j} )\Xi_{k}^{i} }\), \(\Theta_{k}^{j} = \sum\nolimits_{i = 1}^{s} {l_{i,s} (\sigma_{j} )\Theta_{k}^{i} }\), and \(V_{k}^{i} { = d}\tau_{{ - \Theta_{k}^{i} }}^{ - 1} \Xi_{k}^{i}\), we conduct summation by parts with respect to \(\eta_{k}\) and \(\eta_{k + 1}\), then the above equation can be rewritten as
Introducing the external stage momenta \(\mu _{k} = \left( {\text{d}\tau _{{ - {h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{k} }}^{{ - 1}} } \right)^{ * } \Lambda _{k}\) and collecting same variation terms would yield
Finally, we can obtain a compact form as following
for \(i = 1,{ 2, } \cdots , \, s;\;j = 1,{ 2, } \cdots , \, m;\;{\text{and}}\;k = 0,{ 1, } \cdots , \, N - 1\). Even though they can be simply viewed as eliminating the terms \(\left( {{{\partial {\ell }} \mathord{\left/ {\vphantom {{\partial {\ell }} {\partial g}}} \right. \kern-\nulldelimiterspace} {\partial g}}} \right)(G_{k}^{j} ,\Xi_{k}^{j} )\) in Eq. (39), they correspond to different Lagrangian mechanical systems.
Appendix-C
The first three-stage quadrature weights and integrating matrixes in Eqs. (9) and (10) for scheme 1 are presented in the following Table 1 for the Gauss–Legendre points and the Chebyshev points, respectively. Note that these data are applicable for the time interval \([ - 1,\;1]\).
Rights and permissions
About this article
Cite this article
Yi, Z., Yue, B. & Deng, M. Hamilton–Pontryagin spectral-collocation methods for the orbit propagation. Acta Mech. Sin. 37, 1696–1713 (2021). https://doi.org/10.1007/s10409-021-01138-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10409-021-01138-3