Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hamilton–Pontryagin spectral-collocation methods for the orbit propagation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

According to the discrete Hamilton–Pontryagin variational principle, we construct a class of variational integrators in the real vector spaces and extend to the Lie groups for the left-trivialized Lagrangian mechanical systems by employing the spectral-collocation method to discretize the corresponding Lagrangian and kinematic constraints. The constructed framework can be transformed easily to the well-known symplectic partitioned Runge–Kutta methods and the higher order symplectic partitioned Lie Group methods by choosing same interpolation nodes and quadrature points. Two numerical experiments about the orbit propagation of Kepler two-body system and the rigid-body flow propagation of a free rigid body are conducted, respectively. The simulating results reveal that the constructed update schemes can possess simultaneously the excellent exponent convergence rates of spectral methods and the attractive long-term structure-preserving properties of geometric numerical algorithms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer 10, 357–514 (2001). https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  2. Feng, K., Qin, M.Z.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Hall, J., Leok, M.: Spectral variational integrators. Numer. Math. 130, 681–740 (2015). https://doi.org/10.1007/s00211-014-0679-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Tran, B., Leok, M.: Multisymplectic Hamiltonian Variational Integrators, arXiv preprint, arXiv:2101.07536 (2021)

  5. Leitz, T., de Almagro, R.T.S.M., Leyendecker, S.: Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation—no shear locking. Comput. Methods Appl. Mech. Eng. 374, 113475 (2021). https://doi.org/10.1016/j.cma.2020.113475

    Article  MathSciNet  MATH  Google Scholar 

  6. Bou-Rabee, N., Marsden, J.E.: Hamilton-Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties. Found. Comput. Math. 9(2), 197–219 (2009). https://doi.org/10.1007/s10208-008-9030-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics part I: implicit Lagrangian systems. J. Geom. Phys. 57(1), 133–156 (2006). https://doi.org/10.1016/j.geomphys.2006.02.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics Part II: variational structures. J. Geom. Phys. 57(1), 209–250 (2006). https://doi.org/10.1016/j.geomphys.2006.02.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Cendra, H., Marsden, J.E., Pekarsky, S., et al.: Variational principles for Lie-Poisson and Hamilton-Poincaré equations. Mosc. Math. J. 3, 833–867 (2003). https://doi.org/10.17323/1609-4514-2003-3-3-833-867

    Article  MathSciNet  MATH  Google Scholar 

  10. Marsden, J.E., Scheurle, J.: The reduced Euler-Lagrange equations. Fields Inst. Commun. 1, 139–164 (1993). https://doi.org/10.1090/fic/001/07

    Article  MathSciNet  MATH  Google Scholar 

  11. Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999). https://doi.org/10.1016/S0168-9274(98)00030-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Engø, K.: On the construction of geometric integrators in the RKMK class. BIT Numer. Math. 40(1), 41–61 (2000). https://doi.org/10.1023/A:1022362117414

    Article  MathSciNet  MATH  Google Scholar 

  13. Xing, J.T.: Generalised energy conservation law of chaotic phenomena. Acta. Mech. Sin. 35, 1257–1268 (2019). https://doi.org/10.1007/s10409-019-00886-7

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.M., Liu, Q.X., Liu, J.K.: Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems. Acta. Mech. Sin. 36, 918–925 (2020). https://doi.org/10.1007/s10409-020-00966-z

    Article  MathSciNet  Google Scholar 

  15. Bogfjellmo, G., Marthinsen, H.: High-order symplectic partitioned Lie group methods. Found. Comput. Math. 16(2), 493–530 (2016). https://doi.org/10.1007/s10208-015-9257-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, D.H., Berchenko-Kogan, Y., Zenkov, D.V., et al.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. 27(1), 241–283 (2017). https://doi.org/10.1007/s00332-016-9332-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Leok, M.: Variational discretizations of gauge field theories using group-equivariant interpolation. Found. Comput. Math. 19(5), 965–989 (2019). https://doi.org/10.1007/s10208-019-09420-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Kharevych, L., Yang, W., Tong, Y., et al.: Geometric, variational integrators for computer animation. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp 43–51 (2006) https://doi.org/10.5555/1218064.1218071

  19. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graph. TOG 28(2), 1–14 (2009). https://doi.org/10.1145/1516522.1516527

    Article  Google Scholar 

  20. Kobilarov, M., Marsden, J.E.: Discrete geometric optimal control on Lie groups. IEEE Trans. Rob. 27(4), 641–655 (2011). https://doi.org/10.1109/TRO.2011.2139130

    Article  Google Scholar 

  21. Jiménez, F., Kobilarov, M., de Diego, D.M.: Discrete variational optimal control. J. Nonlinear Sci. 23(3), 393–426 (2013). https://doi.org/10.1007/s00332-012-9156-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, Y., Shen, J.: An efficient spectral method for elliptic PDEs in complex domains with circular embedding. SIAM J. Sci. Comput. 43(1), A309–A329 (2021). https://doi.org/10.1137/20M1345153

    Article  MathSciNet  MATH  Google Scholar 

  23. Sheng, C., Shen, J., Tang, T., et al.: Fast fourier-like mapped chebyshev spectral-galerkin methods for PDEs with integral fractional laplacian in unbounded domains. SIAM J. Numer. Anal. 58(5), 2435–2464 (2020). https://doi.org/10.1137/19M128377X

    Article  MathSciNet  MATH  Google Scholar 

  24. Hall, J., Leok, M.: Lie group spectral variational integrators. Found. Comput. Math. 17(1), 199–257 (2017). https://doi.org/10.1007/s10208-015-9287-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Yi, Z.G., Yue, B.Z., Deng, M.: Chebyshev spectral variational integrator and applications. Appl. Math. Mech. 41(5), 753–768 (2020). https://doi.org/10.1007/s10483-020-2602-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Bolatti, D.A., De Ruiter, A.H.: Galerkin variational integrators for orbit propagation with applications to small bodies. J. Guid. Control. Dyn. 42(2), 347–363 (2019). https://doi.org/10.2514/1.G003767

    Article  Google Scholar 

  27. Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4), 1497–1532 (2011). https://doi.org/10.1093/imanum/drq027

    Article  MathSciNet  MATH  Google Scholar 

  28. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, New York (2013)

    MATH  Google Scholar 

  29. Holm, D.D.: Geometric Mechanics: Part II: Rotating, Translating and Rolling. World Scientific Publishing Company, London (2008)

    Book  Google Scholar 

  30. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, New York (2006)

    MATH  Google Scholar 

  31. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., et al.: Lie-group methods. Acta Numer. 9, 215–365 (2000). https://doi.org/10.1017/S0962492900002154

    Article  MathSciNet  MATH  Google Scholar 

  32. Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Philos. Trans. R. Soc. Lond. Ser. A 357(1754), 983–1019 (1999). https://doi.org/10.1098/rsta.1999.0362

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11772049, and 12132002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozeng Yue.

Additional information

Executive Editor: Guilin Wen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-A

We know that Sect. 3.2 takes a “reverse order” interpolation style to construct the HP spectral-collocation variational integrators in Eq. (14). We would give the results of taking a “positive order” style in the following.

Firstly, adopt the Lagrange interpolation polynomial to approximate the variable \(q(t)\) on the \(k{\text{th}}\) time subinterval \([kh,(k + 1)h]\), i.e.,

$$q_{\text{d}} (t_{\sigma } ) = \sum\limits_{j = 0}^{s} {l_{j,s} (\sigma )q_{k}^{j} } ,$$
(A1)

where \({{t_{\sigma } = (\sigma + 1)h} \mathord{\left/ {\vphantom {{t_{\sigma } = (\sigma + 1)h} 2}} \right. \kern-\nulldelimiterspace} 2}{\text{ belongs to }}[0,h]\), \(l_{j,s} (\sigma )\) is the interpolation basis function, and \(q_{k}^{j}\) represent the control nodes in interval \([0,h]\).

Then we can obtain the approximation curve of velocity term \(\dot{q}_{\text{d}} (t)\) by using the following differential formula

$$\dot{q}_{\text{d}} (t_{\sigma } ) = \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma )q_{k}^{j} } ,$$
(A2)

where \(\dot{l}_{j,s} (\sigma )\) is the differential of classic Lagrange interpolation polynomial. One can choose the Barycentric Lagrange interpolation, which possesses a better numerical stability [25].

Given a Lagrangian \(L:TQ \to {\mathbb{R}}\) with second order continuous partial derivatives, we then define a discrete path space \({\mathcal{C}}_{\text{d}} = \left\{ {\left[ {q,p,\left( {Q^{i} ,V^{i} ,p^{i} } \right)_{i = 1}^{m} } \right]_{\text{d}} :\left( {t_{k} } \right)_{k = 0}^{N} \to T^{ * } Q \times } \right.\) \(\left. {\left( {TQ \times T^{ * } Q} \right)^{m} \left| {q(t_{0} ) = q_{0} ,q(t_{N} ) = q_{N} } \right.} \right\}\). Then the discrete HP action sum \({\mathfrak{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} ) \to {\mathbb{R}}\) takes the form as following

$$\begin{aligned} {\mathfrak{S}}_{{\text{d}}} & = \sum\limits_{k = 0}^{N - 1} \left\{ \frac{h}{2}\sum\limits_{i = 1}^m {{\omega _i}L(Q_k^i,V_k^i)} + \frac{h}{2}\sum\limits_{i = 1}^m {\left\langle {p_k^i,V_k^i - \frac{2}{h}\sum\limits_{j = 0}^s {{{\dot l}_{j,s}}({\sigma _i})q_k^j} } \right\rangle } \right. \\ & \quad + {\left\langle {{p_k},q_k^ + - {q_k}} \right\rangle + \left\langle {{p_{k + 1}},{q_{k + 1}} - q_{k + 1}^ - } \right\rangle } \Bigg\}, \end{aligned}$$
(A3)

where \(q_{k}^{ + }\) is the approximating point of \(q_{k}\) from the “right” side, and \(q_{k + 1}^{ - }\) is the approximating point of \(q_{k + 1}\) from the “left” side in the \(k{\text{th}}\) time interval \([t_{k} ,t_{k + 1} ]\).

According to the discrete HP variational principle, we should find a discrete curve \(c_{\text{d}} \in {\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} )\), which is a critical point of \({\mathfrak{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} (q_{0} ,q_{N} ) \to {\mathbb{R}}\), i.e.,\({\mathbf{d}}{\mathfrak{S}}_{\text{d}} (c_{\text{d}} ) = 0\). Taking the variations of \({\mathfrak{S}}_{\text{d}}\) yields

$$\begin{gathered} {\updelta }{\mathfrak{S}}_{{\text{d}}} = \sum\limits_{k = 0}^{N - 1} {\left\{ {\frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \left[ {\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} ) \cdot {\updelta }Q_{k}^{i} + \frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} ) \cdot {\updelta }V_{k}^{i} } \right]} } \right.} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\frac{h}{2}\;\sum\limits_{i = 1}^{m} {\left\langle {{\updelta }p_{k}^{i} ,V_{k}^{i} - \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} )q_{k}^{j} } } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\frac{h}{2}\sum\limits_{i = 1}^{m} {\left\langle {p_{k}^{i} ,{\updelta }V_{k}^{i} - \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} ) \cdot {\updelta }q_{k}^{j} } } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left\langle {{\updelta }p_{k} ,q_{k}^{ + } - q_{k} } \right\rangle + \left\langle {p_{k} ,{\updelta }q_{k}^{ + } } \right\rangle \; \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + {\left\langle {{\updelta }p_{k + 1} ,q_{k + 1} - q_{k + 1}^{ - } } \right\rangle + \left\langle { - p_{k + 1} ,{\updelta }q_{k + 1}^{ - } } \right\rangle } \Bigg\}. \hfill \\ \end{gathered}$$
(A4)

Substituting expression \(Q_{k}^{i} = \sum\nolimits_{j = 0}^{s} {l_{j,s} (\sigma_{i} )q_{k}^{j} }\), \(q_{k}^{ + } = q_{k}^{0}\), and \(q_{k + 1}^{ - } = q_{k}^{s}\) into above equation yields

$$\begin{gathered} {\updelta }{\mathfrak{S}}_{{\text{d}}} = \sum\limits_{k = 0}^{N - 1} {\left\{ {\frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \left[ {\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} )\sum\limits_{j = 0}^{s} {l_{j,s} (\sigma_{i} ) \cdot {\updelta }q_{k}^{j} } } \right]} } \right.} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} ) \cdot {\updelta }V_{k}^{i} } + \frac{h}{2}\sum\limits_{i = 1}^{m} {\left\langle {p_{k}^{i} ,{\updelta }V_{k}^{i} } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{h}{2}\sum\limits_{i = 1}^{m} {\left\langle {{\updelta }p_{k}^{i} ,V_{k}^{i} - \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} )q_{k}^{j} } } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{h}{2}\sum\limits_{i = 1}^{m} {\left\langle { - \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} )p_{k}^{i} } ,{\updelta }q_{k}^{j} } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left\langle {{\updelta }p_{k} ,q_{k}^{0} - q_{k} } \right\rangle + \left\langle {p_{k} ,{\updelta }q_{k}^{0} } \right\rangle \; \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + {\left\langle {{\updelta }p_{k + 1} ,q_{k + 1} - q_{k}^{s} } \right\rangle + \left\langle { - p_{k + 1} ,{\updelta }q_{k}^{s} } \right\rangle } \Bigg\}.\; \hfill \\ \end{gathered}$$
(A5)

Collecting the terms with same variations and eliminating \(p_{k}^{i}\) terms gain

$$\begin{aligned} {\updelta }{\mathfrak{S}}_{{\text{d}}} &= \sum\limits_{k = 0}^{N - 1} {\left\{ {\sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{s - 1} {\left\langle {\frac{h}{2}\omega_{i} l_{j,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} )} \right.} } } \right.} \\ &\qquad \qquad + \left. {\omega_{i} \dot{l}_{j,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} ),{\updelta }q_{k}^{j} } \right\rangle \\ & \qquad + \;\sum\limits_{i = 1}^{m} {\left\langle {\frac{h}{2}\omega_{i} l_{0,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} )} \right.} \\ &\qquad + \left. {\omega_{i} \dot{l}_{0,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} ) + p_{k} ,{\updelta }q_{k}^{0} } \right\rangle \\ &\qquad + \sum\limits_{i = 1}^{m} {\left\langle {\frac{h}{2}\omega_{i} l_{s,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} )} \right.} \\ & \qquad \left. { + \omega_{i} \dot{l}_{s,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} ) - p_{k + 1} ,{\updelta }q_{k}^{s} } \right\rangle \\ & \qquad + \;\frac{h}{2}\sum\limits_{i = 1}^{m} {\left\langle {{\updelta }p_{k}^{i} ,V_{k}^{i} - \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} )q_{k}^{j} } } \right\rangle } \\ &\qquad + \;\left\langle {{\updelta }p_{k} ,q_{k}^{0} - q_{k} } \right\rangle \\ &\qquad + {\left\langle {{\updelta }p_{k + 1} ,q_{k + 1} - q_{k}^{s} } \right\rangle } \Bigg\}.\; \\ \end{aligned}$$
(A6)

Finally, one can arrive at a set of discrete update schemes, which can be written in a compact form as

$$\left\{ {\begin{array}{*{20}l} {q_{k}^{0} = q_{k} ,} \hfill \\ {Q_{k}^{i} = \sum\limits_{j = 0}^{s} {l_{j,s} (\sigma_{i} )q_{k}^{j} } ,} \hfill \\ {V_{k}^{i} = \frac{2}{h}\sum\limits_{j = 0}^{s} {\dot{l}_{j,s} (\sigma_{i} )q_{k}^{j} } ,} \hfill \\ {p_{k} = - \frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \left[ {l_{0,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} ) + \frac{2}{h}\dot{l}_{0,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} )} \right]} ,} \hfill \\ {0 = \frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \left[ {l_{j,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} ) + \frac{2}{h}\dot{l}_{j,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} )} \right],} } \hfill \\ {p_{k + 1} = \frac{h}{2}\sum\limits_{i = 1}^{m} {\omega_{i} \left[ {l_{s,s} (\sigma_{i} )\frac{\partial L}{{\partial q}}(Q_{k}^{i} ,V_{k}^{i} ) + \frac{2}{h}\dot{l}_{s,s} (\sigma_{i} )\frac{\partial L}{{\partial \dot{q}}}(Q_{k}^{i} ,V_{k}^{i} )} \right]} ,} \hfill \\ {q_{k + 1} = q_{k}^{s} ,} \hfill \\ \end{array} } \right.$$
(A7)

for \(i = 1,{ 2, } \cdots , \, m\); \(j = 1,{ 2, } \cdots , \, s - 1\); and \(k = 0,{ 1, } \cdots , \, N - 1\).

One can find that the discrete update framework in Eq. (A-7) is just the well-known spectral variational integrators presented in Refs. [3, 25] (i.e., Eq. (810) of Ref. [3] and Eq. (11a-11c) of Ref. [25], respectively), where the result is derived from the discrete variational mechanics, but here we achieve it from the HP perspective.

Appendix-B

When the Lagrangian is left-invariant, i.e., \(L(g,v) = L(hg,hv)\) holds for all \(h \in G\), then the reduced Lagrangian \({\ell }(\xi ) = L(e,\xi ) = L(g,g\xi )\) (with \(h = g^{ - 1}\)) can be obtained. One can derive the discrete spectral-collocation update schemes as described in Eq. (39).

The continuous reduced HP action integral can be written as

$${\mathcal{S}} = \int_{{t_{0} }}^{{t_{\text{f}} }} {{\ell }(\xi ){\text{d}}t} { + }\int_{{t_{0} }}^{{t_{\text{f}} }} {\left\langle {\mu ,g^{ - 1} \dot{g} - \xi } \right\rangle {\text{d}}t} .$$
(B1)

The approximation strategy is similar to the one in Sect. 3.3. We define the discrete reduced path space as \({\mathcal{C}}_{\text{d}} = \left\{ {\left[ {g,\Lambda ,\left( {\Theta^{i} ,\Xi^{i} } \right)_{i = 1}^{s} ,\left( {\lambda^{j} } \right)_{j = 1}^{m} } \right]_{\text{d}} :\left( {t_{k} } \right)_{k = 0}^{N} \to \left( {G \times {\mathfrak{g}}^{ * } } \right) \times } \right.\)\(\left. {\left( {{\mathfrak{g}} \times {\mathfrak{g}}^{ * } } \right)^{s} \times \left( {{\mathfrak{g}}^{ * } } \right)^{m} \left| {g(t_{0} ) = g_{0} ,g(t_{N} ) = g_{N} } \right.} \right\}.\)

Then the discrete reduced HP action sum \({\mathcal{S}}_{{\text{d}}} :{\mathcal{C}}_{\text{d}} \to {\mathbb{R}}\) takes the following form

$$\begin{gathered} {\mathcal{S}}_{{\text{d}}} = \sum\limits_{{k = 0}}^{{N - 1}} {\frac{h}{2}\left\{ {\sum\limits_{{j = 1}}^{m} {\omega _{j} {\ell }(\Xi _{k}^{j} )} + \sum\limits_{{j = 1}}^{m} {\left\langle {\lambda _{k}^{j} ,{{2\Theta _{k}^{j} } \mathord{\left/ {\vphantom {{2\Theta _{k}^{j} } h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {{\mathcal{A}}_{i}^{j} V_{k}^{i} } } \right\rangle } + } \right.} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left\langle {\Lambda _{{k + 1}} ,{{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} \mathord{\left/ {\vphantom {{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {\varpi _{i} V_{k}^{i} } } \right\rangle } \right\}. \hfill \\ \end{gathered}$$
(B2)

The discrete reduced HP principle states that \({\updelta }{\mathcal{S}}_{{\text{d}}} = 0\) with variations \(\left( {{\updelta }g_{k} ,{\updelta }\Lambda_{k} ,{\updelta }\Theta_{k}^{i} ,{\updelta }\Xi_{k}^{i} ,{\updelta }\lambda_{k}^{j} } \right)\) and the fixed endpoint variations \(\left( {{\updelta }g_{0} = {\updelta }g_{N} = 0} \right)\). Taking the variation of \({\mathcal{S}}_{{\text{d}}}\) yields

$$\begin{gathered} \delta {\mathcal{S}}_{d} = \sum\limits_{{k = 0}}^{{N - 1}} {\left\{ {\frac{h}{2}\sum\limits_{{j = 1}}^{m} {\omega _{j} \ell ^{\prime}(\Xi _{k}^{j} ) \cdot \delta \Xi _{k}^{j} } } \right.} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\frac{h}{2}\sum\limits_{{j = 1}}^{m} {\left\langle {\delta \lambda _{k}^{j} ,{{2\Theta _{k}^{j} } \mathord{\left/ {\vphantom {{2\Theta _{k}^{j} } h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {{\mathcal{A}}_{i}^{j} V_{k}^{i} } } \right\rangle } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \sum\limits_{{j = 1}}^{m} {\left\langle {\lambda _{k}^{j} ,\delta \Theta _{k}^{j} } \right\rangle } - \;\frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle {{\mathcal{A}}_{i}^{j} \lambda _{k}^{j} ,\delta V_{k}^{i} } \right\rangle } } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{h}{2}\left\langle {\delta \Lambda _{{k + 1}} ,{{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} \mathord{\left/ {\vphantom {{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {\varpi _{i} V_{k}^{i} } } \right\rangle \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left\langle { - \left( {\text{d}\tau _{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{{k + 1}} }}^{{ - 1}} } \right)^{ * } \Lambda _{{k + 1}} ,\eta _{k} } \right\rangle \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left\langle {\left( {\text{d}\tau _{{ - {h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{{k + 1}} }}^{{ - 1}} } \right)^{ * } \Lambda _{{k + 1}} ,\eta _{{k + 1}} } \right\rangle \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\left. {\frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle { - \varpi _{i} \Lambda _{{k + 1}} ,\delta V_{k}^{i} } \right\rangle } } } \right\}. \hfill \\ \end{gathered}$$
(B3)

In terms of expressions \(\Xi_{k}^{j} = \sum\nolimits_{i = 1}^{s} {l_{i,s} (\sigma_{j} )\Xi_{k}^{i} }\), \(\Theta_{k}^{j} = \sum\nolimits_{i = 1}^{s} {l_{i,s} (\sigma_{j} )\Theta_{k}^{i} }\), and \(V_{k}^{i} { = d}\tau_{{ - \Theta_{k}^{i} }}^{ - 1} \Xi_{k}^{i}\), we conduct summation by parts with respect to \(\eta_{k}\) and \(\eta_{k + 1}\), then the above equation can be rewritten as

$$\begin{aligned} \delta {\mathcal{S}}_{d} & = \sum\limits_{{k = 0}}^{{N - 1}} {\left\{ {\frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {l_{{i,s}} (\sigma _{j} )\omega _{j} \ell ^{\prime}(\Xi _{k}^{j} ) \cdot \delta \Xi _{k}^{i} } } } \right.} \\ &\qquad + \frac{h}{2}\sum\limits_{{j = 1}}^{m} {\left\langle {\delta \lambda _{k}^{j} ,{{2\Theta _{k}^{j} } \mathord{\left/ {\vphantom {{2\Theta _{k}^{j} } h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {{\mathcal{A}}_{i}^{j} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } } \right\rangle } \\ &\qquad + \sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle {l_{{i,s}} (\sigma _{j} )\lambda _{k}^{j} ,\delta \Theta _{k}^{i} } \right\rangle } } \\ &\qquad + \frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle { -{\mathcal{A}}_{i}^{j} D\left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } \right)^{ * } \lambda _{k}^{j} ,\delta \Theta _{k}^{i} } \right\rangle } } \\ &\qquad + \frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle { - {\mathcal{A}}_{i}^{j} \left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} } \right)^{ * } \lambda _{k}^{j} ,\delta \Xi _{k}^{i} } \right\rangle } } \\ &\qquad + \frac{h}{2}\left\langle {\delta \Lambda _{{k + 1}} ,{{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} \mathord{\left/ {\vphantom {{2\tau ^{{ - 1}} \left( {g_{k}^{{ - 1}} g_{{k + 1}} } \right)} h}} \right. \kern-\nulldelimiterspace} h} - \sum\limits_{{i = 1}}^{s} {\varpi _{i} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } } \right\rangle \\ &\qquad + \;\left\langle {\left( {\text{d}\tau _{{ - h/2\xi _{k} }}^{{ - 1}} } \right)^{ * } \Lambda _{k} - \left( {\text{d}\tau _{{h/2\xi _{{k + 1}} }}^{{ - 1}} } \right)^{ * } \Lambda _{{k + 1}} ,\eta _{k} } \right\rangle \\ & \qquad + \frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle { - \varpi _{i} D\left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } \right)^{ * } \Lambda _{{k + 1}} ,\delta \Theta _{k}^{i} } \right\rangle } } \\ &\qquad \left. { + \frac{h}{2}\sum\limits_{{j = 1}}^{m} {\sum\limits_{{i = 1}}^{s} {\left\langle { - \varpi _{i} \left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} } \right)^{ * } \Lambda _{{k + 1}} ,\delta \Xi _{k}^{i} } \right\rangle } } } \right\}. \\ \end{aligned}$$
(B4)

Introducing the external stage momenta \(\mu _{k} = \left( {\text{d}\tau _{{ - {h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{k} }}^{{ - 1}} } \right)^{ * } \Lambda _{k}\) and collecting same variation terms would yield

$$\left\{ {\begin{array}{*{20}l} {\sum\limits_{{j = 1}}^{m} {l_{{i,s}} (\sigma _{j} )\omega _{j} \ell ^{\prime}(\Xi _{k}^{j} )} = \left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} } \right)^{ * } \left( {\sum\limits_{{j = 1}}^{m} {{\mathcal{A}}_{i}^{j} \lambda _{k}^{j} } + \varpi _{i} \Lambda _{{k + 1}} } \right),} \hfill \\ {\sum\limits_{{j = 1}}^{m} {l_{{i,s}} (\sigma _{j} )\lambda _{k}^{j} } = \frac{h}{2}D\left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } \right)^{ * } \left( {\sum\limits_{{j = 1}}^{m} {{\mathcal{A}}_{i}^{j} \lambda _{k}^{j} } + \varpi _{i} \Lambda _{{k + 1}} } \right),} \hfill \\ {\Theta _{k}^{j} = \frac{h}{2}\sum\limits_{{i = 1}}^{s} {{\mathcal{A}}_{i}^{j} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } ,} \hfill \\ {\xi _{{k + 1}} = \sum\limits_{{i = 1}}^{s} {\varpi _{i} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } ,} \hfill \\ {g_{{k + 1}} = g_{k} \tau \left( {\frac{h}{2}\xi _{{k + 1}} } \right),} \hfill \\ {\mu _{{k + 1}} = \left( {A\text{d}\tau _{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{{k + 1}} }} } \right)^{ * } \mu _{k} .} \hfill \\ \end{array} } \right.$$
(B5)

Finally, we can obtain a compact form as following

$$\left\{ {\begin{array}{*{20}l} {\sum\limits_{{j = 1}}^{m} {l_{{i,s}} (\sigma _{j} )\omega _{j} \ell ^{\prime}(\Xi _{k}^{j} )} = \left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} } \right)^{ * } \left( {\sum\limits_{{j = 1}}^{m} {{\mathcal{A}}_{i}^{j} \lambda _{k}^{j} } + \varpi _{i} \Lambda _{{k + 1}} } \right),} \hfill \\ {\sum\limits_{{j = 1}}^{m} {l_{{i,s}} (\sigma _{j} )\lambda _{k}^{j} } = \frac{h}{2}D\left( {\text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } \right)^{ * } \left( {\sum\limits_{{j = 1}}^{m} {{\mathcal{A}}_{i}^{j} \lambda _{k}^{j} } + \varpi _{i} \Lambda _{{k + 1}} } \right),} \hfill \\ {\Theta _{k}^{j} = \frac{h}{2}\sum\limits_{{i = 1}}^{s} {{\mathcal{A}}_{i}^{j} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } ,} \hfill \\ {\xi _{{k + 1}} = \sum\limits_{{i = 1}}^{s} {\varpi _{i} \text{d}\tau _{{ - \Theta _{k}^{i} }}^{{ - 1}} \Xi _{k}^{i} } ,} \hfill \\ {g_{{k + 1}} = g_{k} \tau \left( {\frac{h}{2}\xi _{{k + 1}} } \right),} \hfill \\ {\mu _{{k + 1}} = \left( {A\text{d}\tau _{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-\nulldelimiterspace} 2}\xi _{{k + 1}} }} } \right)^{ * } \mu _{k} ,} \hfill \\ \end{array} } \right.$$
(B6)

for \(i = 1,{ 2, } \cdots , \, s;\;j = 1,{ 2, } \cdots , \, m;\;{\text{and}}\;k = 0,{ 1, } \cdots , \, N - 1\). Even though they can be simply viewed as eliminating the terms \(\left( {{{\partial {\ell }} \mathord{\left/ {\vphantom {{\partial {\ell }} {\partial g}}} \right. \kern-\nulldelimiterspace} {\partial g}}} \right)(G_{k}^{j} ,\Xi_{k}^{j} )\) in Eq. (39), they correspond to different Lagrangian mechanical systems.

Appendix-C

The first three-stage quadrature weights and integrating matrixes in Eqs. (9) and (10) for scheme 1 are presented in the following Table 1 for the Gauss–Legendre points and the Chebyshev points, respectively. Note that these data are applicable for the time interval \([ - 1,\;1]\).

Table 1 First three-stage Butcher tableaux for HPSCVI in scheme 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Yue, B. & Deng, M. Hamilton–Pontryagin spectral-collocation methods for the orbit propagation. Acta Mech. Sin. 37, 1696–1713 (2021). https://doi.org/10.1007/s10409-021-01138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01138-3

Keywords