Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Natural Frequency Analysis of Osseointegration for Trans-femoral Implant

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Osseointegration trans-femoral implants are a new orthopaedic anchoring method to attach prosthetic limbs. The clinical success of this promising technique depends on the effectiveness of osseointegration achieved after implantation. The aim of this study is to use the resonant characteristics of the implant system to determine the changes in stability as a reflection of boundary condition of the implant. With a small mechanical excitation, Vibration responses of the trans-femoral implant to a small mechanical excitation were measured using an accelerometer and the vibration signal was analyzed using Fast Fourier Transform (FFT) software to obtain the fundamental natural frequency (NF) of the implant system. In-vitro study was conducted using different silicone rubbers to simulate the interface condition. The result showed that a high NF corresponded to a high elastic modulus of the interface material between the implant and bone. A preliminary in-vivo study with one osseointegration trans-femoral implant patient showed that there was a decrease of NF after initial weight bearing rehabilitation. After continued weight bearing, the NF gradually returned to the pre-loading level at around day 24 and the general trend of the NF reached a stable state 38 days after the first weight bearing exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Albrektsson T., Jacobsson M. (1987) Bone-metal interface in osseointegration. J. Prosthet. Dent. 57: 597–607

    Article  PubMed  CAS  Google Scholar 

  2. Branemark R., Branemark P. I., Rydevik B., Myers R. R. (2001) Osseointegration in skeletal reconstruction and rehabilitation. J. Rehabil. Res. Dev. 38: 175–181

    PubMed  CAS  Google Scholar 

  3. Carlsson L., Rostlund T., Albrektsson B., Albrektsson T. (1988) Removal torques for polished and rough titanium implants. Int. J. Oral. Maxillofac. Implants 3: 21–24

    PubMed  CAS  Google Scholar 

  4. Cawley P., Pavlakovic B., Alleyne D. N., George R., Back T., Meredith N. (1998) The design of a vibration transducer to monitor the integrity of dental implants. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 212(H4): 265–272

    Article  CAS  Google Scholar 

  5. Crismani A. G., Bernhart T., Schwarz K., Celar A. G., Bantleon H. P., Watzek G. (2006) Ninety percent success in palatal implants loaded 1 week after placement: A clinical evaluation by resonance frequency analysis. Clin. OralImpl. Res. 17:445–450

    Article  Google Scholar 

  6. Dhert W. J., Verheyen C. C., Braak L. H., Dewijn J. R., Klein C. P., DeGroot K., Rozing P. M. (1992) A finite element analysis of the push-out test: influence of test conditions. J. Biomed. Mater. Res. 26(1): 119–130

    Article  PubMed  CAS  Google Scholar 

  7. Ericsson I., Johansson C. B., Bystedt H., Norton M. R. (1994) A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titaniumdental implants. A pilot study in the dog. Clin. Oral. Implan. Res. 5: 202–206

    Article  CAS  Google Scholar 

  8. Friberg B., Sennerby L., Linden B., Grondahl K., Lekholm U. (1999) Stability measurements of one-stage Branemark implants during healing in mandibles: A clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg. 28: 266–272

    Article  PubMed  CAS  Google Scholar 

  9. Georgiou, A. P., and J. L. Cunningham. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 16(4):315–323, 2001

    Google Scholar 

  10. Hagberg K., Branemark R. (2001) Consequences of non-vascular trans-femoral amputation: A survey of quality of life, prosthetic use and problem. Prosthet. Orthot. Int. 25: 186–194

    PubMed  CAS  Google Scholar 

  11. Huang H. M., Chiu C. L., Yeh C. Y., Lee S. Y. (2003) Factors influencing the resonance frequency of dental implants. J. Oral Maxillofac. Surg. 61(10): 1184–1188

    Article  PubMed  Google Scholar 

  12. Huang H. M., Chiu C. L., Yeh C. Y., Lin C. T., Lin L. H., Lee S. Y. (2003) Early detection of implant healing process using resonance frequency analysis. Clin. Oral Implants Res. 14(4): 437–443

    Article  PubMed  Google Scholar 

  13. Huang H. M., Lee S. Y., Yeh C. Y., Wang M. S., Chang W. J., Lin C. T. (2001) Natural frequency analysis of periodontal conditions in human anterior teeth. Ann. Biomed. Eng. 29(10): 915–920

    Article  PubMed  CAS  Google Scholar 

  14. Huang H. M., Pan L. C., Lee S. Y., Chiu C. L., Fan K. H., Ho K. N. (2000) Assessing the implant/bone interface by using natural frequency analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol Endod. 90(3): 285–291

    Article  PubMed  CAS  Google Scholar 

  15. Johansson C. B., Sennerby L., Albrektsson T. (1991) A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and vitallium implants. Int. J. Oral. Maxillofac. Implants 6: 437–441

    PubMed  CAS  Google Scholar 

  16. Lee S. Y., Huang H. M., Lin C. Y., Shih Y. H. (2000) In vivo and in vitro natural frequency analysis of periodontal conditions: An innovative method. J. Periodont. 71(4): 632–640

    Article  PubMed  CAS  Google Scholar 

  17. Li P. L. S., Jones N. B., Gregg P. J. (1995) Loosening of total hip arthroplasty-diagnosis by vibration analysis. J. Bone Joint Surg. BR 77b(4): 640–644

    Google Scholar 

  18. Lippmann R. K. (1932) The use of auscultatory percussion for the examination of fractures. J. Bone Joint Surg. 14: 118

    Google Scholar 

  19. Lundborg G., R. Skalak, P. I. Branemark, D. Heinegard, W. Maloney, and T. Hansson. Osseointegration in skeletal reconstruction and joint replacement. 2nd International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement. 215–225, 1997

  20. Meredith N. (1998) Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 11: 491–501

    PubMed  CAS  Google Scholar 

  21. Meredith N., Alleyne D., Cawley P. (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral. Implants Res. 7: 261–267

    Article  PubMed  CAS  Google Scholar 

  22. Nakatsuchi Y., Tsuchikane A., Nomura A. (1996) The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method. Med. Eng. Phys. 18(7): 575–583

    Article  PubMed  CAS  Google Scholar 

  23. Nokes L., Mintowtczyz W. J., Fairclough J. A., Mackie I., Williams J. (1985) Vibration analysis in the assessment of conservatively managed tibial fractures. J. Biomed. Eng. 7(1): 40–44

    Article  PubMed  CAS  Google Scholar 

  24. Nokes L. D. M. (1999) The use of low-frequency vibration measurement in ortheopaedics. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 213: 271–290

    Article  CAS  Google Scholar 

  25. Nokes L. D. M., Mintowl-Czyz W. J., Fairclough J. A., Mackie I., Howard C., Williams J. (1984) Natural frequency of fracture fragments in the assessment of tibial fracture healing. J. Biomed. Eng. 6: 227–229

    Article  PubMed  CAS  Google Scholar 

  26. Qi G., Mouchon W. P., Tan T. E. (2003) How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening? Clin. Biomech. 18(5): 444–458

    Article  Google Scholar 

  27. Sennerby L., Thomsen P., Ericson L. E. (1992) A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int. J. Oral. Maxillofac. Implants 7: 62–71

    PubMed  CAS  Google Scholar 

  28. Sennerby L., Thomsen P., Ericson L. E. (1992) Ultrastructure of the bone-titanium interface in rabbits. J. Mater. Sci- Mater. M. 3: 262–271

    Article  CAS  Google Scholar 

  29. Singh V. R., Yadav S., Adya V. P. (1989) Role of natural frequency of bone as a guide for detection of bone fracture healing. J. Biomed. Eng. 11: 457–461

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan J., Uden M., Robinson K. P., Sooriakumaran S. (2003) Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: The United Kingdom experience. Presthet. Othot. Int. 27: 114–120

    CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support to the principal investigator Dr WEI XU from the Research Grant of the Royal Society, UK. The acknowledgement also goes to the colleagues at Queen Mary’s Hospital, Roehampton London for their clinical assistance and participation to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, F., Xu, W., Crocombe, A. et al. Natural Frequency Analysis of Osseointegration for Trans-femoral Implant. Ann Biomed Eng 35, 817–824 (2007). https://doi.org/10.1007/s10439-007-9276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9276-z

Keywords