Abstract
This paper describes methods and experimental studies concerned with quantitative reconstruction of finger movements in real-time, by means of multi-camera system and 24 surface markers. The approach utilizes a kinematic model of the articulated hand which consists in a hierarchical chain of rigid body segments characterized by 22 functional degrees of freedom and the global roto-translation. This work is focused on the experimental evaluation of a kinematical hand model for biomechanical analysis purposes.
From a static posture, a completely automatic calibration procedure, based on anthropometric measures and geometric constraints, computes axes, and centers of rotations which are then utilized as the base of an interactive real-time animation of the hand model. The motion tracking, based on automatic marker labeling and predictive filter, is empowered by introducing constraints from functional finger postures. The validation is performed on four normal subjects through different right-handed motor tasks involving voluntary flexion-extension of the thumb, voluntary abduction–adduction of the thumb, grasping, and finger pointing. Performances are tested in terms of repeatability of angular profiles, model-based ability to predict marker trajectories and tracking success during real-time motion estimation. Results show intra-subject repeatability of the model calibration both to different postures and to re-marking in the range of 0.5 and 2 mm, respectively. Kinematic estimation proves satisfactory in terms of prediction capability (index finger: maximum RMSE 2.02 mm; thumb: maximum RMSE 3.25 mm) and motion reproducibility (R 2 coefficients—index finger: 0.96, thumb: 0.94). During fast grasping sequence (60 Hz), the percentage of residual marker occlusions is less than 1% and processing and visualization frequency of 50 Hz confirms the real-time capability of the motion estimation system.
Similar content being viewed by others
Notes
The palm rotation (2 DoFs) is determined by the two markers at MCP external surface of the index and middle fingers. Apart from the thumb, the rotation of the MCP (2 DoFs), PIP (1 DoF) and DIP (1 DoF) joints of the fingers are all computed by a single marker.
Repeatability of the calibration was validated by analyzing the segmental lengths.
References
An K. N., Chao E. Y., Cooney W. P. III, & Linscheid R.L., (1979). Normative model of human hand for biomechanical analysis. J. Biomech., 12, 775–788.
Biggs J., Horch K., (1999). A three-dimensional kinematic model of the human long finger and the muscles that actuate it. Med. Eng. Phys., 21, 625–639
Braido P., Zhang X., (2004). Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Human Movement Sci., 22, 661–678
Buchholz B., Armstrong T. J., (1992). A kinematic model of the human hand to evaluate its prehensile capabilities. J. Biomech., 25, 149–162
Cerveri P., Lopomo N., Pedotti A., & Ferrigno G., (2005). Derivation of centers and axes of rotation for wrist and fingers in a hand kinematic model: robust methods and reliability results. Ann. Biomed. Eng., 33(3), 401–411
Chèze L., Doriot N., Eckert M., Rumelhart C., & Comtet J. J., (2001). Étude cinématique in vivo de l’articulation Trapézométacarpienne. Chirurgie de la Main, 20, 23–30
Chiu, H. Y., Su F. C., Wang S. T., & Hsu H. Y., (1998). The motion analysis system and goniometry of the finger joints. J. Hand Surg., 23B, 788–791
Chiu, H. Y., Lin, S. C., Su, F. C., Wang, S. T., & Hsu, H. Y. (2000). The use of the motion analysis system for evaluation of loss of movement in the finger. J. Hand Surg., 25, 195–199
Coert J. H., van Dijke H. G., Hovius S. E., Snijders C. J., & Meek M. F., (2003). Quantifying thumb rotation during circumduction utilizing a video technique. J. Orthopedic Res., 21, 1151–1155
Crisco, J. J., Chen, X., Panjabi, M. M., & Wolfe, S. W., (1994). Optimal marker placement for calculating the instantaneous center of rotation. J. Biomech. 27, 1183–1187
Häger-Ross C., Schieber M. H., (2000). Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J. Neurosci., 20(22), 8542–8550
Hollister A., Buford W. L., Myers L. M., Giurintano D. J., & Novick A., (1992). The axes of rotation of the thumb carpometacarpal joint. J. Orthopaedic Res., 10, 454–460
Hollister A., Giurintano D. J., Buford W. L., Myers L. M., & Novick A., (1995). The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthopaed., 330, 188–193
Leonard L., Sirkett D., Mullineux G., Giddins G. E. B., & Miles A. W. (2005). Development of an in-vivo method of wrist joint motion analysis. Clin. Biomech., 20, 166–171
Lin J., Y. Wu, and T. S. Huang, Modeling the constraints of human hand motion. Human Motion, 2000. Proceedings. Workshop on. 7–8 Dec., 121–126, 2000
Kadaba M. P., Ramakrishnan H. K., Wootten M. E., Gainey J., Gorton G., Cochran C. V. B., (1989). Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthopaed. Res., 7, 849–860
Kamper D. G., Cruz E. G., & Siegel M. P., (2003). Stereotypical Fingertip Trajectories During Grasp. J. Neurophys., 90, 3702–3710
Kuo L.-C., Cooney W. P. III, Oyama M., Kaufman K. R., Su F.-C., & An K.-N., (2003). Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint. Clin. Biomech., 18, 558–563
Kuo L.-C., Su F.-C., Chiu H.-Y., & Yu C.-Y., (2002). Feasibility of using a video-based motion analysis system for measuring thumb kinematics. J. Biomech., 35, 1499–1506.
Maravita A., Spence C., & Driver J. (2003) Multisensory integration and the body schema: close to hand and within reach. Curr. Biol., 13, 531–539, 2003
Marin, F., H. Mannel, L. Claes, and L. Durselen. Accurate determination of a joint rotation center based on the minimal amplitude point method, Comp. Aided Surg. 8(1): 30–34, 2003
Mason C. R., Gomez J. E., Ebner T. J., (2001). Hand synergies during reach-to-grasp. J. Neurophysiol., 86(6), 2896–2910.
Mason C. R., Theverapperuma L. S., Hendrix C. M., Ebner T. J., (2004). Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object. J. Neurophysiol., 91(6), 2826–2837
Mason C. R., Hendrix C. M., Ebner T. J., (2006). Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey. J. Neurophysiol., 95(1), 144–158.
Novak K. E., L. E. Miller, & Houk J. C., (2000) Kinematic properties of rapid hand movements in a knob turning task. Exp. Brain Res., 132, 419–433
Rash G. S., Belliappa P. P., Wachowiak M. P., Somia N. N., & Gupta A. (1999). A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension. J. Biomech., 32, 1337–1341
Santos V. J., Valero-Cuevas F. J., (2006). Reported anatomical variability naturally leads to multimodal distributions of Denavit–Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng., 53(2), 155–163
Schieber M. H., Santello M., (2004). Hand function: peripheral and central constraints on performance. J. Appl. Phys. 96, 2293–2300
Small, C. F., Bryant, J. T., & Pichora, D. R., (1992). Rationalization of kinematic descriptors for three-dimensional hand and finger motion. J. Biomed. Eng. 14(2), 133–141
Somia, N., Rash, G. S., Wachowiak, M., & Gupta, A., (1998). The initiation and sequence of digital joint motion. A three dimensional motion analysis. J. Hand Surg., 23B, 792–795
Theverapperuma L.S., Hendrix C.M., Mason C.R., Ebner T.J., (2006). Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy. Exp. Brain Res. 169(4), 433–448
Valero-Cuevas F. J., Johanson M. E., & Towles J. D., (2003). Towards a realistic biomechanical model of the thumb: the choice of kinematics description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36, 1019–1030
Weiss A. P., Moore D. C., Infantolino C, Crisco J. J., Akelman E., McGovern R. D., (2004) Metacarpophalangeal joint mechanics after 3 different silicone arthroplasties. J. Hand Surg. 29(5), 796–803
Wu G., van der Helm F. C. T., Veeger H. E. J., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A. R., McQuade K., Wang X., Werner F. W., & Buchholz B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech., 32, 1337–1341.
Yasumuro Y., Chen Q., & Chihara K., (1999). Three-dimensional modelling of the human hand with motion constraints. Image Vision Comput., 17, 149–156
Yoshida R., House H. O., Patterson R. M., Shah M. A., & Viegas S. F., (2003) Motion and morphology of the thumb metacarpophalangeal joint. J. Hand Surg., 28(5), 753–757
Zhang X., Lee S. W., & Braido P., (2003). Determining finger segmental center of rotation in flexion-extension based on surface marker measurement. J. Biomech., 36, 1097–1102
Acknowledgment
The authors acknowledge the financial support from Italian Spatial Agency (ASI).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cerveri, P., De Momi, E., Lopomo, N. et al. Finger Kinematic Modeling and Real-Time Hand Motion Estimation. Ann Biomed Eng 35, 1989–2002 (2007). https://doi.org/10.1007/s10439-007-9364-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-007-9364-0